

Giải phương trình sau:
[tex]\frac{x+1}{2008} + \frac{x+2}{2007} + \frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}[/tex]
Mình giải không biết đúng không nhưng mình thấy nó hơi mâu thuẫn:
[tex]\frac{x+1}{2008} + \frac{x+2}{2007} + \frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}[/tex]
=> [tex]\frac{x+1}{2008} +1+ \frac{x+2}{2007} +1+ \frac{x+3}{2006}+1=\frac{x+4}{2005}+1+\frac{x+5}{2004}+1+\frac{x+6}{2003}+1[/tex]
=> [tex]\frac{x+2009}{2008} + \frac{x+2009}{2007} + \frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x2009}{2004}+\frac{x+2009}{2003}[/tex]
=>[tex](x+2009)(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006} - \frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003})[/tex])=0
Do:\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006} - \frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003} khác 0
=> x+2009 = 0
=> x=-2009
[tex]\frac{x+1}{2008} + \frac{x+2}{2007} + \frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}[/tex]
Mình giải không biết đúng không nhưng mình thấy nó hơi mâu thuẫn:
[tex]\frac{x+1}{2008} + \frac{x+2}{2007} + \frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}[/tex]
=> [tex]\frac{x+1}{2008} +1+ \frac{x+2}{2007} +1+ \frac{x+3}{2006}+1=\frac{x+4}{2005}+1+\frac{x+5}{2004}+1+\frac{x+6}{2003}+1[/tex]
=> [tex]\frac{x+2009}{2008} + \frac{x+2009}{2007} + \frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x2009}{2004}+\frac{x+2009}{2003}[/tex]
=>[tex](x+2009)(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006} - \frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003})[/tex])=0
Do:\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006} - \frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003} khác 0
=> x+2009 = 0
=> x=-2009