Bình phương hai vế ta có:
[tex]\sqrt{c(a-c)}+\sqrt{c(b-c)}\leq \sqrt{ab}\Rightarrow c(a-c)+c(b-c)+2c\sqrt{(a-c)(b-c)}\leq ab\\ \Leftrightarrow ab-ac-bc+c^2-2c\sqrt{(a-c)(b-c)}+c^2\geq 0\\ \Leftrightarrow (a-c)(b-c)-2c\sqrt{(a-c)(b-c)}+c^2\geq 0\\ \Leftrightarrow (\sqrt{(a-c)(b-c)}-c)^2\geq 0[/tex] (1)
BĐT (1) đúng => đpcm
Dấu "=" xảy ra [tex]\Leftrightarrow a=b=2c[/tex]