- 1+sinx+cos2x+sin3x/1+2sinx=2cos^2x
$ \dfrac{1+\sin x+\cos2x+\sin3x}{1+2\sin x}=2\cos^2x\\\Leftrightarrow \dfrac{1+2\sin2x\cos x+2\cos^2x-1}{1+2\sin x}=2\cos^2x\\\Leftrightarrow 2\sin2x\cos x+2\cos^2x=2\cos^2x+4\sin x\cos^2x\\\Leftrightarrow \sin2x\cos x=2\sin x\cos^2 x\\\Leftrightarrow \sin 2x\cos x=\sin 2x\cos x (\sin2x=2\sin x\cos x) $