$ A = n^3 + 3n^2 + 5n + 3 \\ = n^3 + n^2 + 2n^2 + 2n + 3n + 3 \\ = n^2(n + 1) + 2n(n + 1) + 3(n + 1) \\ = (n + 1)(n^2 + 2n + 3) \\ n = 3k - 1 \\\Rightarrow n + 1 = 3k - 1 + 1 = 3k \vdots 3 \\\Rightarrow A \vdots 3 \\n = 3k \\\Rightarrow n^2 + 2n + 3 = (3k)^2 + 2 . 3k+ 3 = 3(3k^2 + 2k + 1) \vdots 3 \\\Rightarrow A \vdots 3 \\ n = 3k + 1 \\\Rightarrow n^2 + 2n + 1 = (3k + 1)^2 + 2(3k + 1) + 3 = 9k^2 + 6k + 1 + 6k + 2 + 3 = 9k^2 + 12k + 6 = 3(3k^2 + 4k + 2) \vdots 3 \\\Rightarrow A \vdots 3 $
Vậy ...
$ a = 13k + 2; b = 13k + 3 \\ a^2 + b^2 \\ = (13k + 2)^2 + (13k + 3)^2 \\ = (13k)^2 + 52k + 4 + (13k)^2 + 78k + 9 \\ = 2(13k)^2 + 130k + 13 \\ = 13(26k^2 + 10k + 1) \vdots 13 $