CMR : Nếu : 2.(x+y) = 5.(y+z) = 3.(z+x) thì [tex]\frac{x-y}{4}=\frac{y-z}{5}[/tex]
$ 2(x + y) = 5(y + z) = 3(z + x) \\ \Rightarrow \frac{2(x + y)}{30} = \frac{5(y + z)}{30} = \frac{3(z + x)}{30} \\ \Leftrightarrow \frac{x + y}{15} = \frac{y + z}{6} = \frac{z + x}{10} \\ Áp\; dụng\; tính\; chất\; của\; dãy\; tỉ\; số\; bằng\; nhau\; ta\; có: \\ \frac{x + y}{15} = \frac{y + z}{6} = \frac{z + x}{10} = \frac{z + x - y - z}{10 - 6} = \frac{x + y - z - x}{15 - 10} \\ \Leftrightarrow \frac{x + y}{15} = \frac{y + z}{6} = \frac{z + x}{10} = \frac{x - y}{4} = \frac{y - z}{5} \\ \Rightarrow ĐPCM $