cách khác:
theo bất đẳng thức Bunyakovsky, ta có:
$(a+b+c+d)(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{4}{c}+\dfrac{16}{d}) \ge (\sqrt{a.\dfrac{1}{a}}+\sqrt{b.\dfrac{1}{b}}+\sqrt{c.\dfrac{4}{c}}+\sqrt{d.\dfrac{16}{d}})^2 = 64$
$\Longrightarrow \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{4}{c}+\dfrac{16}{d} \ge \dfrac{64}{a+b+c+d}$
dấu "=" xảy ra khi $\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{4}{c}=\dfrac{16}{d}$