Toán hsg 9 ( phần lớp 8)

S

su10112000a

$35+335+3335+... + 33...35$ ( có $99$ số $3$)
$=33+2+333+2+3333+2+...+33...33+2$
$=2.99+(33+333+3333+...+33..33)$
$=198+\dfrac{1}{3}(99+999+9999+...+99...99)$
$=198+\dfrac{1}{3}.(10^2-1+10^3-1+...+10^{100}-1)$
$=198-33+\dfrac{1}{3}(10^2+10^3+...+10^{100})$
$=(\dfrac{10^{101}-10^2}{27})+165$
 
S

sagacious

$35+335+3335+... + 33...35$ ( có $99$ số $3$)
$=33+2+333+2+3333+2+...+33...33+2$
$=2.99+(33+333+3333+...+33..33)$
$=198+\dfrac{1}{3}(99+999+9999+...+99...99)$
$=198+\dfrac{1}{3}.(10^2-1+10^3-1+...+10^{100}-1)$
$=198-33+\dfrac{1}{3}(10^2+10^3+...+10^{100})$
$=(\dfrac{10^{101}-10^2}{27})+165$

tại sao lại ra $=(\dfrac{10^{101}-10^2}{27})+165$ .
 
Top Bottom