Ta có: $a+b+c=0.\ \Rightarrow (a+b+c)^2=0\\
\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=0 \\
\Leftrightarrow a^2+b^2+c^2=-(2ac+2ab+2bc)\\
\Rightarrow (a^2+b^2+c^2)^2 = (2ac+2ab+2bc)^2\\
\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=4a^2b^2+4a^2c^2+4b^2c^2+8a^2bc+8ab^2c+8abc^2\\
\Leftrightarrow a^4+b^4+c^4=2a^2b^2+2a^2c^2+2b^2c^2+8abc(a+b+c)\\
\Rightarrow a^4+b^4+c^4=2a^2b^2+2a^2c^2+2b^2c^2$
Do đó: $(a^2+b^2+c^2)^2=a^4+b^4+c^4+2a^2b^2+2a^2c^2+ 2b^2c^2 = 2(a^4+b^4+c^4)$ (đpcm)