làm thử từng phần xem nào (mới làm quen nên gõ chưa thạo, mọi người thông cảm nhé )
\[\begin{array}{l}
\int\limits_1^e {\frac{{dx}}{{{x^3}\sqrt {\ln x + 2} }}} \\
u = \frac{1}{{\sqrt {\ln x + 2\;} }}\\
\Rightarrow du = \frac{{ - \left( {\ln x + 2} \right)dx}}{{2x}}\;\\
dv = \frac{{dx}}{{{x^3}\;\;}} \to v = \frac{{ - 1}}{\begin{array}{l}
2{x^2}\;\\
\;\\
\end{array}}\;\;\\
\int\limits_1^e {\frac{{dx}}{{{x^3}\sqrt {\ln x + 2} }}} = \;\left. {\frac{{ - 1}}{{2{x^2}\sqrt {\ln x + {2^{}}} }}} \right|_{x\;\;}^e - \int\limits_1^e {\frac{{\left( {\ln x + 2} \right)dx}}{{4{x^3}}}} \;\\
= \;\left. {\frac{{ - 1}}{{2{x^2}\sqrt {\ln x + {2^{}}} }}} \right|_{x\;\;}^e - \int\limits_1^e {\frac{{\ln xdx}}{{4{x^3}}}} - \int\limits_1^e {\frac{{dx}}{{2{x^3}}}} = \frac{{ - 1}}{{2\sqrt 3 .{e^2}}} + \frac{1}{{2\sqrt 2 }} - {I_1} - {I_{2\;}}\;\\
\left[ \begin{array}{l}
\int\limits_1^e {\frac{{\ln xdx}}{{4{x^3}}}} \;\;\\
u = \ln x \to du = \frac{{dx}}{x}\;\\
dv = \frac{{dx}}{{{x^3}}} \to v = \frac{{ - 1}}{{2{x^2}}}\;\\
\int\limits_1^e {\frac{{\ln xdx}}{{4{x^3}}}} \;\; = \left. {\frac{{ - {\mathop{\rm lnx}\nolimits} }}{{2{x^2}}}} \right|_1^e - \int\limits_x^e {\frac{{dx}}{{2{x^3}}}} = \left. {\left( {\frac{{ - \ln x}}{{2{x^2}}} - \frac{1}{{4{x^2}}}} \right)} \right|_1^e\;\\
\int\limits_1^e {\frac{{dx}}{{2{x^3}}}} = \left. {\frac{1}{{4{x^2}}}} \right|_1^e\;\\
\int\limits_1^e {\frac{{dx}}{{{x^3}\sqrt {\ln x + 2} }}} = \frac{{ - 1}}{{2\sqrt 3 .{e^2}}} + \frac{1}{{2\sqrt 2 }} - \left. {\left( {\frac{{ - \ln x}}{{2{x^2}}} - \frac{1}{{4{x^2}}}} \right)} \right|_1^e\; - \left. {\frac{1}{{4{x^2}}}} \right|_1^e\; = \frac{{ - 1}}{{2\sqrt 3 .{e^2}}} + \frac{1}{{2\sqrt 2 }} + \frac{7}{{16{e^2}}} - \frac{5}{{16}}
\end{array} \right]
\end{array}\]