[Toán 7] Chứng minh?

O

one_day

Last edited by a moderator:
T

thinhrost1

$A = $ 1 - $\dfrac{3}{4}$ + ($\dfrac{3}{4}$)$^2$ - ($\dfrac{3}{4}$)$^3$ + ($\dfrac{3}{4}$)$^4$ - ... - ($\dfrac{3}{4}$)$^{2009}$ + ($\dfrac{3}{4}$)$^{2010}$

Dễ dàng suy ra được $A>0( 1 - \dfrac{3}{4} >0$,..$\dfrac{3}{4}$)$^2$ - ($\dfrac{3}{4}$)$^3$>0,...

Và: $A=1-(\dfrac{3}{4} - (\dfrac{3}{4})^2 + (\dfrac{3}{4})^3 - (\dfrac{3}{4})^4 - ... +(\dfrac{3}{4})^{2009} - (\dfrac{3}{4})^{2010}) <1$ Do:

$\dfrac{3}{4} - (\dfrac{3}{4})^2 + (\dfrac{3}{4})^3 - (\dfrac{3}{4})^4 - ... +(\dfrac{3}{4})^{2009} - (\dfrac{3}{4})^{2010}>0$

Ta có:

$0<A<1$ nên A không phải số nguyên
 
Top Bottom