đề thi thử ĐH lần 1 khối A

T

thelanguoivietnam

mình thử giải như sau

I=\int_{}^{}d(tanx)/(sinx.cosx)^3=\int_{}^{}d(tanx)/(sin2x)^3

Đặt a=tanx\Rightarrowsin2x=2a/(a^2+1)\Rightarrow1/sin^3(2x)=(1/8).(a^3+3a+3/a+1/a^3)

\Rightarrow 8I=\int_{}^{}(a^3+3a+3/a+1/a^3)da=(a^4)/4+3(a^2)/2+3ln/a/-1/(2a^2)
\RightarrowI=(a^4)/32+3(a^2)/16+(3ln/a/)/8-1/8(2a^2)
(a=tanx)
 
D

defhuong

I=\int_{}^{}d(tanx)/(sinx.cosx)^3=\int_{}^{}d(tanx)/(sin2x)^3

Đặt a=tanx\Rightarrowsin2x=2a/(a^2+1)\Rightarrow1/sin^3(2x)=(1/8).(a^3+3a+3/a+1/a^3)

\Rightarrow 8I=\int_{}^{}(a^3+3a+3/a+1/a^3)da=(a^4)/4+3(a^2)/2+3ln/a/-1/(2a^2)
\RightarrowI=(a^4)/32+3(a^2)/16+(3ln/a/)/8-1/8(2a^2)
(a=tanx)

tớ mạn phép sửa bài nhìn cho dễ :">:">
.........
........
.........
[TEX]I=\int_{}^{}\frac{d(tanx)}{(sinx.cosx)^3}=\int_{}^{}\frac{d(tanx)}{(sin2x)^3}[/TEX]

Đặt a=tanx
\Rightarrow [TEX]sin2x=\frac{2a}{(a^2+1)}[/TEX]

\Rightarrow1 [TEX]sin^32x=\frac{1}{8}.(a^3+3a+\frac{3}{a}+\frac{1}{a^3})[/TEX]

\Rightarrow [TEX]I=\int_{}^{}(a^3+3a+\frac{3}{a}+\frac{1}{a^3})da[/TEX]

\Rightarrow1 [TEX]I=\frac{a^4}{4}+\frac{3a^2}{2}+3ln|a|-\frac{1}{2a^2}[/TEX]

\Rightarrow [TEX]I=\frac{a^4}{32}+\frac{3a^2}{16}+\frac{3ln|a|}{8}-\frac{1}{8a^2}[/TEX]

(a=tanx)
câu này khó quá :(
 
Last edited by a moderator:
Top Bottom