CMR: nếu a+b+c=0 thì:
[TEX]A= (\frac{a-b}{c} + \frac{b-c}{a} + \frac{c-a}{b})(\frac{c}{a-b} + \frac{a}{(b-c)} + \frac{b}{c-a}) = 9[/TEX]
Chú ý latex, đã sửa
Tớ giải thế này cậu xem sao nhé:
[TEX]A=(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b})(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a})[/TEX]
[TEX]=(\frac{ab(a-b)+ac(c-a)+bc(b-c)}{abc})(\frac{c(b-c)(c-a)+a(a-b)(c-a)+b(a-b)(b-c)}{(a-b)(b-c)(c-a)})[/TEX]
[TEX]=(\frac{{a}^{2}b-a{b}^{2}+a{c}^{2}-{a}^{2}c+{b}^{2}c-b{c}^{2}-abc+abc}{abc})(\frac{b{c}^{2}+a{c}^{2}+{a}^{2}c+{a}^{2}b+a{b}^{2}+b{c}^2-{a}^{3}-{b}^{3}-{c}^{3}}{(a-b)(b-c)(c-a)})[/TEX]
[TEX]=(\frac{b(a^2-ab+bc-ac)-c(bc-ac+{a}^{2}-ab)}{abc})(\frac{b{c}^{2}+a{c}^{2}+{a}^{2}c+{a}^{2}b+a{b}^{2}+b{c}^{2}+abc+abc+abc-9abc}{(a-b)(b-c)(c-a)})[/TEX]
[TEX]=(\frac{(b-c)[a(a-b)-c(a-b)]}{abc})(\frac{ab(a+b+c)+bc(a+b+c)+ac(a+b+c)-9abc}{(a-b)(b-c)(c-a)})[/TEX]
[TEX]=-(\frac{(a-b)(c-a)(b-c)}{abc})(\frac{-9abc}{(a-b)(b-c)(c-a)})[/TEX]
=9
Thế là xong rồi đấy:M055::M055::M055: