Nhờ bạn giải thêm giải thêm bài này
[tex]\int\limits_{0}^{\frac{\pi}{4}}\frac{x+sinx}{1+cosx}dx[/tex]
[tex]I = \int\limits_{0}^{\frac{\pi}{4}}\frac{x+sinx}{1+cosx}dx = \int\limits_{0}^{\frac{\pi}{4}}\frac{x}{1+cosx}dx + \int\limits_{0}^{\frac{\pi}{4}}\frac{sinx}{1 + cosx}dx[/tex]
[TEX]E = \int\limits_{0}^{\frac{\pi}{4}}\frac{x}{1+cosx}dx [/TEX]
Đặt
[tex] u = x \Rightarrow du = dx [/tex]
[tex] dv = \frac{dx}{1+cosx} = \frac{dx}{2cos^2{\frac{x}{2}}} \Rightarrow v = tan{\frac{x}{2}}[/tex]
[TEX] E = xtan{\frac{x}{2}}|\begin{matrix} \frac{\pi}{4} \\ 0 \end{matrix} - \int\limits_{0}^{\frac{\pi}{4}}tan{\frac{x}{2}}dx[/TEX]
Bạn
[TEX]F = \int\limits_{0}^{\frac{\pi}{4}}\frac{sinx}{1 + cosx}dx = -\int\limits_{0}^{\frac{\pi}{4}}\frac{d(cosx + 1)}{1 + cosx} = - ln(1 + cosx)|\begin{matrix} \frac{\pi}{4} \\ 0 \end{matrix} [/TEX]

I = E + F =....................................
