Xin giải giúp bài này

A

aloha122

Last edited by a moderator:
R

riverflowsinyou1

a) Xét $\triangle{ABM}$ và $\triangle{ADM}$
$AD=AB$,$AM$ chung, $\widehat{BAM}=\widehat{DAM}$(gt)
\Rightarrow $\triangle{ABM}=\triangle{ADM}$ (c-g-c) \Leftrightarrow $BM=DM$
b) Xét $\triangle{ABC}$ và $\triangle{ADK}$
$AD=AB$,$\widehat{A}$ chung,$\widehat{ADK}=\widehat{ABC}$ ( $\triangle{ABM}=\triangle{ADM}$)
\Rightarrow $\triangle{ABC}=\triangle{ADK}$ (g-c-g)
c) $\triangle{ABC}=\triangle{ADK}$ (cmt) \Rightarrow $AK=AC$ \Rightarrow $\triangle{AKC}$ cân tại $A$
d) $\widehat{B}+\widehat{C}<180^o$
\Rightarrow $180^o-\widehat{B}=180^o-\widehat{ADM}=\widehat{CDM}>\widehat{C}$
\Rightarrow $CM>DM=BM$
 
T

thangvegeta1604

d. Ta có: $\widehat{CDM}>\widehat{ADM}$ (góc ngoài)
$\widehat{ADM}=\widehat{ABM}$ (Do $\large\Delta ADM=\large\Delta ABM$).
$\widehat{ABM}>\widehat{ACM}$ (do AC>AB)
\Rightarrow $\widehat{CDM}>\widehat{ACM}$
\Rightarrow CM>DM.
Mà DM=MB (Do $\large\Delta ADM=\large\Delta ABM$)
\Rightarrow CM>MB.
 
Top Bottom