a) Ta có: [tex]0 < u_n=\frac{2n}{n+2}=2-\frac{4}{n+2} < 2\Rightarrow (u_n)[/tex] bị chặn
b) [tex]0 < u_n=\frac{1}{n(n+1)} \leq \frac{1}{1.2}=\frac{1}{2}[/tex] [tex]0 < u_n=\frac{1}{n(n+1)} \leq \frac{1}{1.2}=\frac{1}{2} \Rightarrow (u_n)[/tex] bị chặn
c) Ta thấy: [tex]u_n=1+\frac{n-1}{n^2+n+1}\geq 1[/tex]
Lại có: [tex]t=\frac{n^2+2n}{n^2+n+1}\Rightarrow n^2+2n=tn^2+tn+t\Rightarrow (t-1)n^2+(t-2)n+t=0\Rightarrow \Delta =(t-2)^2-4t(t-1)=-3t^2+4\geq 0\Rightarrow t\leq \sqrt{\frac{4}{3}}\Rightarrow u_n\leq \sqrt{\frac{4}{3}}[/tex]
Vậy [TEX](u_n)[/TEX] bị chặn.
d) Ta thấy: [tex]-1\leq (-1)^n \leq 1, -1\leq cos(\frac{\pi }{2n})\leq 1\Rightarrow -1\leq u_n\leq 1\Rightarrow (u_n)[/tex] bị chặn