a)Ta có:[tex]x^2+xy+y^2=2x+y\Leftrightarrow x^2-2x+xy+y^2-y=0\Leftrightarrow 2x^2-4x+2xy+2y^2-2y=0\Leftrightarrow (x^2-4x+4)+(x^2+2xy+y^2)+(y^2-2y+1)=5\Leftrightarrow (x-2)^2+(x+y)^2+(y-1)^2=5\Rightarrow (x-2)^2\leq 5\Leftrightarrow |x-2|=0 hoặc |x-2|=1[/tex]
+ |x-2|=0 [tex]\Rightarrow x=2\Rightarrow (y+2)^2+(y-1)^2=5\Rightarrow 2y^2+2y+5=5\Rightarrow 2y^2+2y=0\Rightarrow 2y(y+1)=0\Rightarrow y=0 hoặc y=1[/tex]
+ |x-2|=1 [tex]\Rightarrow x=1 hoặc x=3[/tex]
* x=1 [tex]\Rightarrow (y+1)^2+(y-1)^2=1\Rightarrow y^2+2=1\Rightarrow y^2=-1(loại)[/tex]
* x=3 [tex]\Rightarrow (y+3)^2+(y-1)^2=1\Leftrightarrow 2y^2+4y+10=1\Rightarrow 2(y+1)^2=-7(loại)[/tex]
Vậy [tex](x,y)=(2,-1);(2,0)[/tex]
b)[tex]x^2-2xy+5y^2=y+1\Leftrightarrow (x-y)^2+4y^2-y=1\Leftrightarrow 16(x-y)^2+64y^2-16y=16\Leftrightarrow 16(x-y)^2+(8y-1)^2=17[/tex]
[tex]\Rightarrow 16(x-y)^2\leq 17\Rightarrow |x-y|=0 hoặc |x-y|=1[/tex]
+ |x-y|=0 [tex]\Rightarrow \left\{\begin{matrix} x=y\\ (8y-1)^2=17(loại) \end{matrix}\right.[/tex]
+ |x-y|=1 [tex]\Rightarrow (8y-1)^2=1\Leftrightarrow 64x^2-16x=0\Leftrightarrow 16x(4x-1)=0\Rightarrow x=0(t/m)hoặc x=\frac{1}{4}(loại)[/tex]
Thay vào ta có:[tex]|x|=1\Rightarrow x=\pm 1[/tex]
Vậy [tex](x,y)=(1,0);(-1,0)[/tex]