H
Help_physics
Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.
Tiếp Nolbels' prices about Physic
4.1. Hạt nhân nguyên tử
Các hệ phức đầu tiên từ quan điểm của các nhà giản hóa luận là thành phần cấu thành hạt nhân, tức là các neutron và proton được tạo thành từ các quark và gluon. Hệ thứ hai là các hạt nhân nguyên tử, theo một phép gần đúng bậc một, được tạo thành từ các hạt nucleon. Mô hình đầu tiên về cấu trúc hạt nhân là mô hình các lớp hạt nhân, do Maria Goeppert-Mayer và Johannes D. Jensen đưa ra vào cuối những năm 40, họ nhận thấy rằng ít nhất đối với các hạt nhân với hình gần như hình cầu thì các nucleon bên ngoài cùng cũng lấp đầy các mức năng lượng giống như các điện tử trong nguyên tử. Tuy vậy, trật tự của các nucleon lại khác với các điện tử và được xác định bởi một thế năng chung và bởi sự kết cặp spin-quĩ đạo rất mạnh của các lực hạt nhân. Mô hình của họ giải thích tại sao hạt nhân lại đặc biệt ổn định với một số xác định (con số kì diệu) các proton. Họ chia nhau giải Nobel vật lí năm 1963 cùng với Eugene Wigner, người đã công thức hóa các nguyên lí đối xứng cơ bản rất quan trọng trong vật lí hạt nhân và vật lí hạt.
Hạt nhân có số nucleon khác với con số kì diệu thì lại không phải là hình cầu. Niels Bohr đã từng nghiên cứu mô hình giọt chất lỏng áp dụng cho các hạt nhân bị biến dạng như vậy (có thể có dạng hình e-líp), và vào năm 1939 người ta thấy rằng nếu kích thích các hạt nhân bị biến dạng mạnh có thể dẫn đến sự phân chia hạt nhân, tức là hạt nhân bị phá vỡ thành hai mảnh lớn. Otto Hahn nhận giải Nobel hóa học năm 1944 cho phát hiện quá trình mới này. Hình phi cầu của hạt nhân biến dạng sinh thêm các bậc tự do cũng giống như sự dao động tập thể của các hạt nhân. James Rainwater, Aage Bohr (con trai của Niels Bohr) và Ben Mottelson đã phát triển các mô hình mô tả các kích thích hạt nhân và họ cùng nhận giải Nobel vật lí năm 1975.
Các mô hình về hạt nhân được nhắc đến trên đây không chỉ dựa trên các nguyên lí chung, có tính định hướng mà còn dựa trên các thông tin ngày càng tăng về phổ hạt nhân. Harold C. Urey đã phát hiện ra deuterium, một đồng vị nặng của Hidro, và vì thế, ông được trao giải Nobel về hóa học vào năm 1934. Fermi, Lawrence, Cockcroft, và Walton đã được nhắc đến ở phần trước đã phát triển các phương pháp để tạo ra các đồng vị hạt nhân không bền. Edwin M. McMillan và Glenn T. Seaborg nhận giải Nobel hóa học năm 1951 vì đã mở rộng bảng đồng vị hạt nhân tới các nguyên tố nặng nhất. Năm 1954, Walther Bothe và Max Born (người được nhắc đến ở trên) nhận giải Nobel vật lí vì phát triển phương pháp trùng hợp cho phép những người nghiên cứu quang phổ có thể lựa chọn các chuỗi bức xạ hạt nhân có liên quan từ phân rã hạt nhân. Phương pháp này lại hóa ra rất quan trọng, đặc biệt là trong nghiên cứu các trạnng thái kích thích của hạt nhân và tính chất điện từ của chúng.
4.2. Nguyên tử
Khi xem xét các hệ nhiều hạt, các lớp điện tử của các nguyên tử dễ nghiên cứu hơn của hạt nhân (hạt nhân thực ra bao gồm không chỉ các proton và neutron mà còn nhiều thành phần hơn nguyên tử, như là các hạt “ảo” có thời gian sống ngắn). Đó là do lực điện từ yếu và đơn giản hơn lực hạt nhân “mạnh” giữ các thành phần của hạt nhân lại với nhau. Cơ học lượng tử của Schrödinger, Heisenberg, và Pauli và phần mở rộng tương đối tính của Dirac đã có thể mô tả khá tốt các tính chất cơ bản của các điện tử trong nguyên tử. Tuy vậy, một bài toán có từ lâu vẫn chưa được giải quyết, tức là các vấn đề toán học liên quan đến các tương tác lẫn nhau giữa các điện tử sau khi tính đến lực hút của các hạt nhân mang điện tích dương. Một khía cạnh của vấn đề này đã được đế cập bởi một trong những người đạt giải Nobel hóa học mới đây (1998), đó là Walter Kohn. Ông đã phát triển phương pháp “hàm mật độ” có thể áp dụng vào các nguyên tử tự do cũng như áp dụng cho các điện tử trong các phân tử và trong chất rắn.
Vào đầu thế kỉ 20, bảng tuần hoàn các nguyên tố hóa học vẫn chưa hoàn thiện. Lịch sử ban đầu của giải Nobel bao gồm các phát hiện một số các nguyên tố còn thiếu. Lord Raleigh (John William Strutt) đã chú ý đến những dị thường về khối lượng nguyên tử tương đối khi các mẫu ô-xi và ni-tơ được tách trực tiếp từ không khí quanh ta chứ không phải tách chúng từ các thành phần hóa học. Ông kết luận rằng khí quyển phải có chứa thành phần chưa biết, đó là nguyên tố argon có khối lượng nguyên tử là 20. Ông nhận giải Nobel vật lí năm 1904, cùng năm với ngài William Ramsay nhận giải Nobel hóa học vì đã tách được nguyên tố Hê-li.
Trong nửa cuối của thế kỉ 20, đã có một sự phát triển vượt bậc về phổ và độ chính xác nguyên tử, mà nhờ đó người ta có thể đo được các dịch chuyển giữa các trạng thái nguyên tử hoặc phân tử mà rơi vào vùng vi sóng hoặc cùng ánh sáng khả kiến. Vào những năm 50, Alfred Kastler (người nhận giải Nobel năm 1966) và các đồng nghiệp cho thấy các điện tử trong các nguyên tử có thể được đặt vào các trạng thái kích thích lọc lựa bằng các sử dụng ánh sáng phân cực. Sau phân rã phóng xạ, ánh sáng phân cực cũng có thể làm cho spin của các nguyên tử ở trạng thái cơ bản định hướng.
Cảm ứng dịch chuyển tần số radio đã mở ra các khả năng đo một cách chính xác hơn trước rất nhiều các tính chất của các trạng thái bị lượng tử hóa của các điện tử trong nguyên tử. Một hướng phát triển song song đã dẫn đến việc phát hiện ra maser và laser dựa trên “khuyếch đại phát xạ kích thích sóng radio” trong các trường sóng điện từ ở vùng vi sóng và khả kiến (ánh sáng) – các hiệu ứng mà về mặt nguyên lí đã được tiên đoán từ các phương trình của Einstein vào năm 1917 nhưng đã không được quan tâm đặc biệt cho đến tận đầu những năm 50.
Charles H. Townes đã phát triển maser đầu tiên vào năm 1958. Nikolay G. Basov và Aleksandr M. Prokhorov đã thực hiện công trình lí thuyết về nguyên lí maser. Maser đầu tiên sử dụng một dịch chuyển kích thích trong phân tử a-mô-ni-ắc. Nó đã phát ra bức xạ vi sóng mạnh không giống như các bức xạ tự nhiên (với các photon có các pha khác nhau). Độ sắc nét của tần số của maser ngay lập tức trở thành một công cụ quang trọng trong kĩ thuật, xác định thời gian và các mục đích khác. Townes nhận nửa giải Nobel vật lí năm 1964, Basov và Prokhorov chia nhau một nửa giải còn lại.
Đối với bức xạ khả kiến, sau này laser được phát triển trong một số phòng thí nghiệm. Nicolaas Bloembergen và Arthur L. Schawlow được nhận nửa giải Nobel năm 1981 cho công trình nghiên cứu về phổ laser chính xác của các nguyên tử và phân tử. Một nửa giải của năm đó được trao cho Kai M. Siegbahn (con trai của Manne Siegbahn), người đã phát triển một phương pháp có độ chính xác cao trong việc xác định phổ nguyên tử và phân tử dựa vào các điện tử phát ra từ các lớp điện tử bên trong khi bị tác động của chùm tia X có năng lượng đã được xác định. Phổ điện tử của ông được sử dụng làm công cụ phân tích trong rất nhiều ngành của vật lí và hóa học.
Sự tác động có điều khiển giữa các điện tử của nguyên tử và các trường điện từ tiếp tục cung cấp những thông tin chi tiết hơn về cấu trúc của các trang thái của điện tử trong nguyên tử.
Norman F. Ramsey đã phát triển các phương pháp chính xác dựa trên sự hưởng ứng của các điện tử tự do trong chùm nguyên tử với trường điện từ tần số radio, Wolfgang Paul đã phát minh ra các “bẫy” nguyên tử tạo thành từ các điện trường và từ trường tác động lên toàn bộ thể tích mẫu. Nhóm nghiên cứu của Hans G. Dehmelt là những người đầu tiên cách li được các hạt riêng lẻ (trong trường hợp này là các phản điện tử) cũng như là các nguyên tử riêng lẻ trong các bẫy như vậy. Lần đầu tiên, các nhà thực nghiệm có “thể giao tiếp” được với các nguyên tử riêng biệt bằng các tín hiệu vi sóng và laser. Điều này cho phép nghiên cứu các khía cạnh mới của tính chất cơ học lượng tử và làm tăng độ chính xác hơn nữa trong việc xác định tính chất nguyên tử và chuẩn hóa thời gian. Paul và Dehmelt nhận một nửa giải Nobel năm 1989 và một nửa giải còn lại được trao cho Ramsey.
Bước cuối cùng trong tiến bộ này là làm cho các nguyên tử trong các bẫy như vậy chuyển động chậm đến mức, ở trạng thái cân bằng nhiệt trong môi trường khí, chúng có thể tương ứng với nhiệt độ chỉ vài micro Kenvin. Điều đó được thực hiện bằng cách cho chúng vào để làm nguội bằng laser thông qua một tập hợp các hệ thống được thiết kế rất thông minh do Steven Chu, Claude Cohen-Tannoudji và William D. Phillips thực hiện khi nhóm này nghiên cứu thao tác lên các nguyên tử thông qua quá trình va chạm với các photon laser. Công trình của họ được nhìn nhận bằng giải Nobel năm 1997, hứa hẹn những ứng dụng quan trọng trong kĩ thuật đo lường bổ sung thêm tính chính xác trong việc xác định định lượng nguyên tử.
4.3 Phân tử và plasma
Các phân tử tạo thành từ các nguyên tử. Chúng tạo ra mức phức tạp tiếp theo khi nghiên cứu các hệ nhiều hạt. Nhưng các nghiên cứu phân tử thường được coi như một nhánh của học (ví dụ như giải Nobel hóa học năm 1936 được trao cho Petrus J. W. Debye), và hiếm khi được trao giải Nobel về vật lí. Chỉ có một ngoại lệ đó là công trình của Johannes Diderik van der Waals, ông đã đưa ra các phương trình trạng thái của các phân tử tcho chất khí khi tính đến tương tác lẫn nhau giữa các phân tử và sự giảm thể tích tự do do gây ra bởi kích thước hữu hạn của chúng. Các phương trình van der Waals là những điểm rất quan trọng trong việc mô tả quá trình ngưng tụ của các chất khí thành chất lỏng. Ông nhận giải Nobel vật lí năm 1910. Jean B. Perrin nghiên cứu chuyển động của các hạt nhỏ lơ lửng trong nước và nhận giải Nobel năm 1926. Nghiên cứu của ông cho phép khẳng định lí thuyết thống kê của Einstein về chuyển động Brown cũng như các định luật điều khiển quá trình cân bằng của các hạt lơ lửng trong chất lỏng khi chịu tác dụng của trọng lực.
Năm 1930, ngài Sir C. Venkata Raman nhận giải Nobel vật lí cho các quan sát của ông chứng tỏ rằng ánh sáng tán xạ từ các phân tử bao gồm các thành phần có tần số bị dịch chuyển tương ứng với ánh sáng đơn sắc. Sự dịch chuyển này gây bởi sự tăng hoặc giảm năng lượng đặc trưng của phân tử khi chúng thay đổi chuyển động quay hoặc dao động. Phổ Raman nhanh chóng trơ thành nguồn thông tin quan trọng cung về cấu trúc và động học phân tử.
Plasma là trạng thái khí của vật chất trong đó các nguyên tử hoặc phân tử bị ion hóa rất mạnh. Lực điện từ giữa các ion dương và giữa các ion và điện tử đóng một vai trò nổi trội điều này làm tăng tính phức tạp khi nghiên cứu plasma so với nguyên tử hoặc phân tử trung tính. Năm 1940, Hannes Alfvén đã chứng minh rằng một loại chuyển động tập thể mới, gọi là “sóng từ-thủy động lực học” có thể được sinh ra trong các hệ plasma. Các sóng này đóng một vai tròn quan trọng xác định tính chất của plasma, trong phòng thí nghiệm cũng như trong khí quyển trái đất và trong vũ trụ. Alfvén nhận nửa giải Nobel năm 1970.
4.4. Vật lí chất rắn
Các tinh thể được đặc trưng bởi sự xắp xếp đều đặn của các nguyên tử. Sau khi phát hiện ra tia X không lâu, Max von Laue nhận thấy rằng, các tia X bị tán xạ khi đi qua các tinh thể chất rắn giống như ánh sáng đi qua một cách tử quang học. Có hiện tượng này là do bước sóng của tia X thông thường trùng với khoảng cách giữa các nguyên tử trong chất rắn. Ngài William Henry Bragg (cha) and William Lawrence Bragg (con) lần đầu tiên dùng tia X để đo khoảng cách giữa các nguyên tử và phân tích sự sắp xếp hình học của các nguyên tử trong các tinh thể đơn giản. Vì các công trình tiên phong trong việc nghiên cứu tinh thể học bằng tia X (mà sau này được phát triển đến trình độ rất cao), họ được trao giải Nobel vật lí, Laue năm 1914 và cha con Bragg năm 1915.
Cấu trúc của tinh thể là trạng thái ổn định nhất trong nhiều trạng thái rắn mà nguyên tử có thể được xắp xếp tại nhiệt độ và áp suất thông thường. Vào những năm 30, Percy W. Bridgman đã phát minh ra các dụng cụ mà nhờ đó có thể nghiên cứu sự thay đổi cấu trúc tinh thể, tính chất điện, từ, nhiệt của chất rắn dưới áp suất cao. Rất nhiều tinh thể thể hiện các chuyển pha dưới các điều kiện đặc biệt như vậy. Sự sắp xếp hình học của các nguyên tử bị thay đổi đột ngột tại áp suất nhất định. Bridgman nhận giải Nobel vật lí năm 1946 cho các phát minh trong lĩnh vực vật lí áp suất cao.
Vào những năm 40, nhờ sự phát triển của các máy phản ứng phân rã hạt nhân, các nhà thực nghiệm có thể thu được các neutron năng lượng thấp. Người ta cũng thấy rằng, giống như tia X, các neutron cũng rất hiệu quả trong việc xác định cấu trúc tinh thể bởi vì bước sóng de Broglie của hạt nhân cũng cỡ khoảng cách giữa các nguyên tử trong chất rắn. Clifford G. Shull đã có nhiều đóng góp cho sự phát triển kĩ thuật nhiễu xạ neutron trong việc xác định cấu trúc tinh thể, và cũng cho cho biết rằng, sự sắp xếp của các mô-men từ nguyên tử trong các vật liệu có trật tự từ có thể làm tăng nhiễu xạ neutron, cung cấp một công cụ rất mạnh để xác định cấu trúc từ.
Shull nhận giải Nobel vật lí năm 1994 cùng với Bertram N. Brockhouse, chuyên gia về một khía cạnh khác của tán xạ neutron trên chất rắn: khi các neutron kích thích kiểu dao động phonon trong tinh thể gây ra suy giảm năng lượng. Do đó, Brockhouse đã phát triển máy phổ neutron 3 chiều, nhờ đó có thể thu được toàn vẹn các đường cong tán sắc (năng lượng của phonon là một hàm của véc-tơ sóng). Các đường cong tương tự có thể thu được đổi với dao động của mạng từ (kiểu magnon).
John H. Van Vleck có đóng góp đặc biệt cho lí thuyết từ học trong chất rắn vào những năm sau khi ra đời cơ học lượng tử. Ông đã tính toán các ảnh hưởng của liên kết hóa học lên các nguyên tử thuận từ và giải thích sự phụ thuộc vào nhiệt độ và từ trường ngoài của tính chất từ. Đặc biệt ông đã phát triển lí thuyết trường tinh thể của các hợp chất của các kim loại chuyển tiếp, đó là điều vô cùng quan trọngtrong việc tìm hiểu các tâm hoạt động trong các hợp chất dùng cho vật lí laser cũng như sinh học phân tử. Ông cùng nhận giải Nobel vật lí với Philip W. Anderson và ngài Nevill F. Mott (xem dưới đây).
Các nguyên tử từ có thể có các mô-men từ sắp xếp theo cùng một phương trong một thể tích nhất định (vật liệu như vậy được gọi là vật liệu sắt từ), hoặc các mô-men có cùng độ lớn nhưng lại sắp xếp đan xen “thuận” rồi đến “nghịch” (vật liệu phản sắt từ), hoặc sắp xếp đan xen nhưng độ lớn lại khác nhau (vật liệu ferri từ,…). Louis E. F. Néel đã đưa ra các mô hình cơ bản mô tả các vật liệu phản sắt từ và ferri từ, đó là các thành phần quan trọng trong nhiều dụng cụ chất rắn. Các vật liệu đó được nghiên cứu rất nhiều bằng kĩ thuật nhiễu xạ neutron đã nói trên đây. Néel nhận một nửa giải Nobel vật lí năm 1970. (*Hiện nay ở CNRS Grenoble có một phòng thí nghiệm về từ học rất nổi tiếng mang tên ông, ông cũng được coi là cha đẻ của ngành khoa học tự nhiên Grenoble, ông từng là giáo sư của trường Joseph Fourier – Grenoble 1 mà rất nhiều AEVG đang theo học*).
Trật tự của các nguyên tử trong tinh thể chất rắn cũng như rất nhiều loại trật tự từ khác nhau là những ví dụ của các hiện tượng trật tự nói chung trong tự nhiên khi các hệ tìm thấy sự sắp xếp sao cho có lợi về mặt năng lượng bằng cách chọn những trạng thái đối xứng nhất định. Các hiện tượng tới hạn, là các hiện tượng mà tính đối xứng sắp bị thay đổi (ví dụ khi nhiệt độ thay đổi chẳng hạn), có tính phổ quát cao cho các loại chuyển pha khác nhau, mà trong đó bao gồm cả chuyển pha từ. Kenneth G. Wilson, người nhận giải Nobel vật lí năm 1982, đã phát triển một lí thuyết gọi là lí thuyết tái chuẩn hóa cho các hiện tượng tới hạn liên hệ với các chuyển pha, một lí thuyết còn được ứng dụng trong lí thuyết trường của vật lí hạt cơn bản.
Các tinh thể lỏng tạo ra một lớp vật liệu đặc biệt có rất nhiều đặc tính lí thú, trên cả quan điểm tương tác cơ bản trong chất rắn cũng như các ứng dụng kĩ thuật. Pierre-Gilles de Gennes đã phát triển lí thuyết cho tinh thể lỏng và sự chuyển giữa các pha có độ trật tự khác nhau. Ông cũng sử dụng cơ học thống kê để mô tử sự sắp xếp và động lực học của các chuỗi polymer, và bằng cách đó cho thấy rằng, các phương pháp được phát triển cho các hiện tượng trật tự trong các hệ đơn giản có thể được khái quát hóa cho các hệ phức tạp có mặt trong “chất rắn mềm”. Vì đóng góp đó, ông nhận giải Nobel vật lí năm 1991.
Một dạng chất lỏng đặc biệt đã được quan tâm nghiên cứu đó là chất lỏng hê-li. Tại áp suất thông thường, hê-li là chất hóa lỏng ở nhiệt độ thấp nhất. Hê-li cũng có hiệu ứng đồng vị mạnh nhất, từ hê-li (4) hóa rắn ở nhiệt độ 4.2 độ Kenvin, cho đến hê-li (3) hóa rắn ở nhiệt độ 3.2 độ Kenvin. Heike Kamerlingh-Onnes là người đầu tiên hóa lỏng hê-li vào năm 1909. Ông nhận giải Nobel vật lí năm 1913 cho các kết quả của hê-li lỏng và cho các nghiên cứu của ông về tính chất của vật chất tại nhiệt độ thấp. Lev D. Landau đã đưa ra các khái niệm cơ bản (ví dụ như chất lỏng Landau) liên quan đến các hệ nhiều hạt trong chất rắn và áp dụng các khái niệm đó vào lí thuyết hê-li lỏng để giải thích các hiện tượng đặc biệt của hê-li (4) như là hiện tượng siêu chảy (xem dưới đây), kích thích “roton”, và các hiện tượng âm học. Ông được trao giải Nobel năm 1962.
Vào những năm 20 và 30, Pyotr L. Kapitsa đã phát triển một số kĩ thuật thực nghiệm để thực hiện và nghiên cứu các hiện tượng ở nhiệt độ thấp. Ông nghiên cứu nhiều khía cạnh của hê-li (4) lỏng và cho thấy rằng hê-li lỏng có tính siêu chảy (tức là chảy không có ma sát) khi nhiệt độ thấp hơn 2.2 độ Kenvin. Sau này hiện tượng siêu chảy được hiểu là sự thể hiện của mối liên hệ lượng tử giữa hiện tượng ngưng tụ Bose-Einstein (được tiên đoán bằng lí thuyết vào năm 1920) và nhiều tính chất giống như trạng thái siêu dẫn của điện tử trong một số chất dẫn điện đặc biệt. Kapitsa được trao một nửa giải Nobel vật lí năm 1978.
Hê-li (3) thì lại thể hiện các hiện tượng đặc biệt, vì mỗi hạt nhân hê-li có spin khác không chứ không giống như hê-li (4). Do đó, nó giống như là các hạt fermion và không bị ngưng tụ Bose-Einstein như các hạt boson. Tuy vậy, giống như các vật liệu siêu dẫn (xem dưới đây), các cặp hạt có spin bán nguyên có thể tạo thành các hạt “giả boson” và có thể bị ngưng tụ gây nên trạng thái siêu chảy. Hiện tượng siêu chảy của hê-li (3) xảy ra tại nhiệt độ thấp hơn của hê-li (4) hàng ngàn lần và đã được David M. Lee, Douglas D. Osheroff và Robert C. Richardson phát hiện ra, họ nhận giải Nobel vật lí năm 1996. Họ đã quan sát thấy các pha siêu chảy khác nhau cho thấy cấu trúc xoáy phức tạp và các hiện tượng lượng tử rất thú vị.
Các điện tử trong chất rắn có thể bị định xứ ở xung quanh các nguyên tử của chúng trong các chất cách điện, hoặc chúng có thể chuyển động qua lại giữa các vị trí của các nguyên tử trong các chất dẫn điện hoặc chất bán dẫn. Vào đầu thế kỉ 20, người ta biết rằng các kim loại có thể phát ra các điện tử khi bị nung nóng, nhưng người ta không biết điện tử phát ra là do bị kích thích nhiệt hay là do các tương tác hóa học với môi trường khí xung quanh. Bằng các thực nghiệm tiến hành trong môi trường có chân không cao, cuối cùng, Owen W. Richardson đã xác định rằng sự phát xạ của điện tử là do hiệu ứng nhiệt và ông cũng thiết lập định luật phân bố của của các điện tử theo vận tốc. Và do đó, Richardson nhận giải Nobel năm 1928.
Cấu trúc điện tử xác định các tính chất điện, từ và quang của chất rắn và nó còn có vai trò quan trọng đến tính chất cơ và nhiệt nữa. Một trong những nhiệm vụ quan trọng của các nhà vật lí thế kỉ 20 là đo trạng thái và động học của các điện tử và mô hình hóa các tính chất của chúng để hiểu các tổ chức của các điện tử trong các loại chất rắn khác nhau. Điều rất tự nhiên là các hiện tượng khác thường đã thu hút mạnh mẽ các nhà vật lí chất rắn. Điều đó được phản ánh trong giải Nobel vật lí: vài giải đã được trao các các phát hiện liên quan đến siêu dẫn và các hiện tượng đặc biệt thể hiện trong một số chất bán dẫn.
Siêu dẫn lần đầu tiên được phát hiện từ rất sớm, từ năm 1911. Kamerlingh-Onnes đã thấy rằng điện trở của thủy ngân giảm xuống nhỏ hơn một phần tỉ giá trị bình thường khi bị làm lạnh thấp hơn một nhiệt độ chuyển pha Tc khoảng 4 độ Kenvin. Như được nhắc ở phần trên, ông đã nhận giải Nobel năm 1913. Tuy vậy, một thời gian dài người ta không hiểu tại sao các điện tử có thể chuyển động mà không bị cản trở trong các chất siêu dẫn tại nhiệt độ thấp. Nhưng vào đầu những năm 60, Leon N. Cooper, John Bardeen và J. Robert Schrieffer đã đưa ra lí thuyết dựa trên ý tưởng là các cặp điện tử (có spin và hướng chuyển động ngược nhau) có thể giảm một lượng năng lượng Eg bằng cách chia xẻ một cách chính xác cùng một độ biến dạng của mạng tinh thể khi chúng chuyển động. Các cặp Cooper này hành động giống như các hạt boson. Sự tạo cặp này cho phép chúng chuyển động như một chất lỏng liên kết, không bị ảnh hưởng khi các kích thích nhiệt (có năng lượng là kT) nhỏ hơn năng lượng tạo thành khi kết cặp (Eg). Lí thuyết BCS này được trao giải Nobel vật lí năm 1972.
Đột phá trong việc hiểu cơ sở cơ học năng lượng này dẫn đến các tiến bộ trong các mạch siêu dẫn: Brian D. Josephson đã phân tích sự dịch chuyển của các hạt tải điện giữa hai kim loại siêu dẫn được ngăn cách bởi một lớp vật liệu dẫn điện thường rất mỏng. Ông tìm thấy rằng pha lượng tử xác định tính chất dịch chuyển là một hàm dao động của điện thế bên ngoài đặt lên chuyển tiếp này. Hiệu ứng Josephson có các ứng dụng quan trọng trong các phép đo chính xác vì nó thiết lập mối liên hệ giữa điện thế và tần số. Josephson nhận một nửa giải Nobel vật lí năm 1973. Ivar Giaever, người đã phát minh và nghiên cứu các tính chất chi tiết của “chuyển tiếp đường ngầm” này (một hệ thống điện tử dựa trên chất siêu dẫn) chia nhau một nửa giải còn lại với Leo Esaki cho công trình nghiên cứu về hiệu ứng đường ngầm trong chất bán dẫn (xem dưới đây).
Mặc dầu có khá nhiều các hợp kim và hợp chất siêu dẫn được phát hiện trong khoảng 75 năm sau phát hiện của Kamerlingh-Onnes, hiện tượng siêu dẫn mãi được xem như là hiện tượng chỉ xảy ra tại nhiệt độ thấp, với nhiệt độ chuyển pha siêu dẫn thấp hơn 20 độ Kenvin. Cho nên khi J. Georg Bednorz và K. Alexander Müller cho thấy rằng Ô-xít Lanthan-đồng có pha thêm Ba-rri có nhiệt độ chuyển pha là 35 độ Kenvin thì mọi người rất ngạc nhiên. Và ngay sau đó, các phòng thí nghiệm khác công bố các hợp chất có cấu trúc tương tự như thế có tính siêu dẫn ở nhiệt độ khoảng 100 độ Kenvin. Phát hiện về “siêu dẫn nhiệt độ cao” này khởi động một làn sóng trong vật lí hiện đại: tìm hiểu có chế có bản cho tính siêu dẫn của các vật liệu đặc biệt này. Bednorz and Müller nhận giải Nobel năm 1987.
Chuyển động của các điện tử trong kim loại ở trạng thái dẫn điện bình thường đã được mô hình hóa về lí thuyết đến một độ phức tạp chưa từng có từ khi có mặt của cơ học lượng tử. Một trong những bước tiến lớn ban đầu là việc đưa vào khái niệm sóng Bloch, hàm sóng được lấy tên của nhà vật lí Felix Bloch (người nhận nửa giải Nobel vật lí năm 1952 cho công trình nghiên cứu về cộng hưởng từ). Một khái niệm quan trọng nữa là “chất lỏng điện tử” trong các chất dẫn điện do Lev Landau (xem phần hê-li lỏng). Philip W. Anderson đã có những đóng góp quan trọng vào lí thuyết cấu trúc điện tử của các kim loại, đặc biệt là các bất đồng nhất trong các hợp kim và các nguyên tử từ tạp chất trong các kim loại. Nevill F. Mott đã nghiên cứu các điều kiện chung cho tính dẫn điện của điện tử trong chất rắn và đưa ra các công thức xác định các điểm mà một chất bán dẫn biến thành một chất dẫn điện (chuyển pha Mott) khi thành phần hoặc các thông số bên ngoài bị thay đổi. Anderson và Mott chia nhau một nửa giải Nobel năm 1977 và một nửa giải được trao cho John H. Van Vleck cho các nghiên cứu lí thuyết về cấu trúc điện tử của các hệ từ và mất trật tự.
Một giải Nobel vật lí trước đây (1920) đã được trao cho Charles E. Guillaume cho phát hiện cho thấy rằng giãn nở nhiệt của một số thép ni-ken (hợp kim được gọi là invar) bằng không. Giải Nobel này được trao chủ yếu bởi tầm quan trọng của các hợp kim invar trong các phép đo chính xác được dùng trong vật lí, ngành đo đạc và đặc biệt là thước mét chuẩn được đặt ở Paris. Các hợp kim này được dùng rất rộng rãi trong các dụng cụ có độ chính xác cao như là đồng hồ, … Các cơ sở lí thuyết về sự phụ thuộc vào nhiệt độ của độ giãn nở chỉ mới được giải thích gần đây. Và mới đây (1998), Walter Kohn nhận giải Nobel hóa học cho các phương pháp của ông khi xử lí các tương quan trao đổi lượng tử , mà nhờ đó người ta có thể vượt qua các giới hạn trong tính toán cấu trúc điện tử trong chất rắn và các phân tử.
Trong các chất bán dẫn, độ linh động của các điện tử bị giảm đi rất mạnh do có sự tồn tại của vùng cấm năng lượng đối với các điện tử gọi là các khe năng lượng. Sau khi người ta hiểu được vai trò cơ bản của các tạp chất cho điện tử và nhận điện tử trong si-líc siêu sạch (và sau này còn có các vật liệu khác), các chất bán dẫn được sử dụng làm các bộ phận trong điện kĩ thuật. William B. Shockley, John Bardeen (xem thêm lí thuyết BCS) và Walter H. Brattain đã tiến hành các nghiên cứu cơ bản về siêu dẫn và đã phát triển transistor loại một. Đó là bình minh của kỉ nguyên “linh kiện điện tử”. Họ cùng nhận giải Nobel năm 1956.
Sau này Leo Esaki đã phát triển đi-ốt đường ngầm, một linh kiện điện tử có điện trở vi phân âm, đó là một tính chất kĩ thuật rất thú vị. Nó tạo thành từ hai chất bán dẫn pha tạp loại “n” và loại “p”, có một đầu chuyển dư điện tử và một đầu khác thiếu điện tử. Hiệu ứng đường ngầm xuất hiện khi điện thế dịch lớn hơn khe năng lượng trong các chất bán dẫn. Ông chia giải Nobel vật lí năm 1973 với Brian D. Josephson.
Với kĩ thuật hiện đại, người ta có thể tạo các màng mỏng cấu trúc xác định từ các vật liệu bán dẫn và chúng thể tiếp xúc trực tiếp với nhau. Với cấu trúc không đồng nhất như vậy, con người không bị giới hạn vào các khe năng lượng trong các chất bán dẫn như si-lic hoặc germani nữa. Herbert Kroemer đã phân tích lí thuyết về độ linh động của các điện tử và lỗ trống trong các chuyển tiếp không đồng nhất. Lí thuyết của ông dẫn đến việc tạo ra các transistor với các đặc trưng được cải tiến rất nhiều mà sau này gọi là HEMT (transistor có độ linh động điện tử cao), các HEMT rất quan trọng đối với các linh kiện điện tử tốc độ cao ngày nay. Kroemer cũng giả thiết rằng các cấu trúc không đồng nhất kép có thể tạo điều kiện cho hoạt động của laser, cùng khoảng thời gian với Zhores I. Alferov đưa ra ý tưởng như thế. Sau này Alferov đã tạo ra laser bán dẫn xung đầu tiên vào năm 1970. Sự kiện này là điểm khởi đầu của kỉ nguyên các dụng cụ quang điện hiện này đang dùng trong các đi-ốt laser, đầu đọc đĩa CD, đầu đọc mã vạch và cáp quang viễn thông. Và gần đây, Alferov và Kroemer chia nhau một nửa giải Nobel vật lí năm 2000, một nửa giải còn lại về tay Jack S. Kilby, đồng phát minh mạch điện tử tích hợp (xem phần sau Vật lí và Kĩ thuật).
Khi áp một thế điện cực lên các hệ cấu trúc không đồng nhất, người ta có thể tạo ra “các màng ngược”, trong đó các hạt tải điện chỉ chuyển động trong không gian hai chiều. Các màng như vậy lại hóa ra có các tính chất rất thú vị và kì lạ. Năm 1982, Klaus von Klitzing phát hiện ra hiệu ứng Hall lượng tử. Khi một từ trường mạnh đặt vuông góc với mặt phẳng của màng giả hai chiều, thì các điều kiện lượng tử lại không tăng một cách tuyến tính với sự tăng của từ trường mà lại tăng một cách nhảy bậc ở biên của mẫu. Điện trở Hall giữa các bậc này có giái trị h/ie2 trong đó i là các số nguyên tương ứng với các quĩ đạo điện tử bị lượng tử hóa. Hiệ ứng này cho phép có thể đo tỉ số giữa các hằng số cơ bản rất chính xác, nó có hệ quả quan trọng trong kĩ thuật đo lường, von Klitzing nhận giải Nobel vật lí năm 1985.
Một ngạc nhiên nữa đến ngay sau khi Daniel C. Tsui và Horst L. Störmer thực hiện các nghiên cứu kĩ hơn về hiệu ứng Hall lượng tử sử dụng các màng ngược trong các vật liệu siêu sạch. Trạng thái ổn định xuất hiện trong hiệu ứng Hall không chỉ đối với từ trường tương ứng với sự lấp đầy của các quĩ đạo bởi một, hai, ba v.v. giá trị điện tích của điện tử mà còn đối với các điện tích không nguyên!. Điều này chỉ có thể được hiểu dựa vào một khái niệm về chất lỏng lượng tử mới mà ở đó chuyển động của các điện tử độc lập có điện tích e được thay thế bởi các kích thích trong một hệ nhiều hạt mà hệ này cư xử (trong một từ trường mạnh) như thể các điện tích có giá trị e/3, e/5,… tham gia vào. Robert B. Laughlin phát triển lí thuyết mô tả trạng thái mới của vật chất này và chia giải Nobel vật lí năm 1998 với Tsui and Störmer.
Đôi khi các phát hiện trong một lĩnh vực của vật lí lại hóa ra có các ứng dụng quan trọng trong các lĩnh vực vật lí khác. Một ví dụ liên quan đến vật lí chất rắn đó là quan sát của Rudolf L. Mössbauer vào cuối những năm 50. Hạt nhân của nguyên từ hấp thụ có thể bị kích thích cộng hưởng bởi các tia gamma phát ra từ các nguyên tử phát xạ được chọn một cách hợp lí khi các nguyên tử trong cả hai trường hợp được bắn ra sao cho sự giật lùi của chúng loại trừ nhau. Năng lượng bị lượng tử hóa của hạt nhân trong điện từ trượng nội của chất rắn đó có thể được xác định vì năng lượng đó tương ứng với các vị trí khác nhau của sự cộng hưởng mà sự cộng hưởng này rất sắc nét. Phát hiện này trở nên quan trọng trong việc xác định cấu trúc điện từ của nhiều vật liệu và Mössbauer nhận một nửa giải Nobel vật lí năm 1961 cùng với R. Hofstadter.
5. Vật lí và kĩ thuật
Rất nhiều các phát minh thực nghiệm và lí thuyết được nhắc cho đến nay có một ảnh hưởng lớn đến sự phát triển của các dụng cụ kĩ thuật bằng việc mở ra những lĩnh vực vật lí hoàn toàn mới hoặc đưa ra các ý tưởng để có thể tạo ra các dụng cụ kĩ thuật. Các ví dụ rất dễ thấy là công trình của Shockley, Bardeen, và Brattain mà dẫn đến transitor và khởi đầu cuộc cách mạng điện tử; các nghiên cứu cở bản của Townes, Basov, và Prokhorov dẫn đến việc phát triển maser và laser. Cũng nên nhắc lại rằng các máy gia tốc hạt hiện nay là các công cụ rất quan trọng trong một vài lĩnh vực khoa học vật liệu và y học. Các công trình khác được vinh danh bằng giải Nobel ngày càng có thiên hướng về mặt kĩ thuật hoặc chúng có tầm quan trọng đặc biệt trong việc xây dựng các linh kiện để phát triển ngành liên lạc và thông tin.
Một giải Nobel cách đây khá lâu (1912) đã được trao cho Nils Gustaf Dalén cho phát minh về “van mặt trời” (sun-valve) tự động được dùng rộng rãi trong các cột mốc và phao trong ngành hàng hải. Phát minh đó dựa trên sự khác nhau về bức xạ nhiệt từ các vật có độ phản xạ ánh sáng khác nhau: một trong số ba thanh song song trong dụng cụ của ông có màu đen, điều này làm tăng sự sai khác trong việc hấp thụ nhiệt và dãn nở nhiệt của các thanh trong thời gian mặt trời chiếu vào. Hiệu ứng này được dùng để ngắt nguồn cấp khí tự động vào ban ngày và làm giảm nhiều nhu cầu bảo dưỡng trên biển.
Các dụng cụ và kĩ thuật quang là những chủ đề cho vài giải Nobel. Khoảng đầu thế kỉ 20, Gabriel Lippmann đã phát triển một phương pháp chụp ảnh màu sử dụng hiệu ứng giao thoa ánh sáng. Một chiếc gương được đặt tiếp xúc với một thể nhũ tương nhạy quang phủ trên một tấm kim loại sao cho khi chúng bị chiếu sáng, ánh sáng phản xạ trong chiếc gương sẽ làm tăng sóng đứng trong thể nhũ tương đó. Việc tráng ảnh làm cho các hạt bạc bị (trong thể nhũ tương đó) phân tầng khi gương chiếu sáng lên tấm kim loại và ảnh tạo thành có màu sắc tự nhiên như thật. Giải Nobel năm 1908 được trao cho Lippmann. Không may, phương pháp của Lippmann mất nhiều thời gian phơi sáng. Sau này phương pháp đó bị thay thế bởi các kĩ thuật nhiếp ảnh khác nhưng nó lại có nhiều ứng dụng trong kĩ thuật tạo ảnh ba chiều chất lượng cao.
Trong hiển vi quang học, Frits Zernike cho thấy rằng thậm chí các vật hấp thụ bức xạ rất yếu (trong suốt khi nhìn bằng mắt thường) có thể nhìn thấy được nếu chúng tạo thành từ những vùng có hệ số khúc xạ ánh sáng khác nhau. Trong kính “hiển vi nhạy pha” của Zernike, người ta có thể phân biệt các vệt sáng có pha bị thay đổi khi đi qua các vùng không đồng nhất. Kính hiển vi loại này có tầm quan trọng đặc biệt trong việc quan sát các mẫu sinh học. Zernike nhận giải Nobel vật lí năm 1953. Vàn những năm 40, Dennis Gabor đề ra nguyên lí ảnh ba chiều. Ông tiên đoán rằng nếu tia sáng tới có thể giao thoa với tia phản xạ từ một mảng hai chiều thì có thể tạo được một ảnh ba chiều của vật thể. Tuy vậy, việc thực hiện ý tưởng này phải đợi đến khi laser được phát hiện. laser có thể cung cấp ánh sáng cố kết cần thiết cho quan sát hiện tượng giao thoa nói ở trên. Gabor nhận giải Nobel năm 1971.
Hiển vi điện tử có ảnh hưởng sâu rộng trên nhiều lĩnh vực khoa học tự nhiên. Ngay sau khi C. J. Davisson and G. P. Thomson phát hiện ta bản chất sóng của điện tử, người ta nhận thấy rằng bước sóng ngắn của điện tử năng lượng cao có thể làm tăng độ phân giải so với hiển vi quang học. Ernst Ruska tiến hành các nghiên cứu cơ bản về quang điện tử và thiết kế kính hiển vi điện tử đầu tiên họat động vào những năm đầu của thập niên 30. Nhưng cũng phải mất hơn 50 sau ông mới nhận giải Nobel vật lí.
Ruska nhận một nửa giải Nobel vật lí vào năm 1986, nửa giải còn lại được chia đều cho Gerd Binnig và Heinrich Rohrer, hai người đã phát triển một phương pháp khác hẳn để thu được các bức ảnh với độ phân giải cực cao. Phương pháp của họ được ứng dụng trong nghiên cứu về mặt chất rắn và dựa trên hiệu ứng đường ngầm của các điện tử. Các điện tử của các nguyên tử ở một đầu kim loại rất nhọn có thể chui sang các nguyên tử tử trên bề mặt chất rắn khi đầu nhọn kim loại đó được di chuyển đến rất gần bề mặt (khoảng 1 nm). Bằng cách giữ cho dòng điện tử chui ngầm đó cố định và di chuyển đầu nhọn theo bề mặt chất rắn, người ta có thể có được bức ảnh ba chiều của bề mặt chất rắn cần nghiên cứu. Bằng phương pháp này, ta có thể nhìn thấy từng nguyên tử trên bề mặt.
+++
Viễn thông là một trong những thành tựu kĩ thuật vĩ đại của thế kỉ 20. Vào những năm 90 thế kỉ 19, Guglielmo Marconi đã làm thí nghiệm với sóng điện từ của Hetz mới được phát hiện vào lúc đó. Ông là người đầu tiên liên lạc một trong những trạm phát sóng trên mặt đất với một “ăng-ten” đặt trên cao có vai trò tương tự như một trạm thu sóng. Trong khi các thí nghiệm đầu tiên của Hetz được tiến hành trong phạm vi phòng thí nghiệm thì Marconi đã mở rộng khoảng cách truyền tín hiệu đến vài km. Carl Ferdinand Braun (cha đẻ của ống Braunian, dao động kế chùm ca-tốt đầu tiên) đã thực hiện một cải tiến, ông đưa mạch cộng hưởng vào các máy phát dao động của Hetz. Độ hòa âm và khả năng tạo các dao động mạnh không bị chặn làm tăng dải truyền sóng, và vào năm 1901, Marconi đã thành công trong việc thu phát sóng vô tuyết vượt Đại Tây Dương. Marconi và Braun cùng nhận giải Nobel vật lí năm 1909. Vào thời điểm này, người ta vẫn không hiểu làm thế nào mà sóng vô tuyến có thể truyền với những khoảng cách xa (thực tế, chúng có thể truyền đến bên kia trái đất), nhớ rằng mọi người đều biết sóng vô tuyến có bản chất giống ánh sáng, chúng truyền theo đường thẳng trong không gian. Cuối cùng thì ngài Edward V. Appleton đã chứng minh bằng thực nghiệm rằng một giả thiết trước đó của Heaviside và Kennelly cho rằng sóng vô tuyến bị phản xạ giữa các lớp không khí có độ dẫn khác nhau trong khí quyển là đúng. Appleton đã đo giao thoa của sóng trực tiếp và sóng phản xạ với các bước sóng khác nhau và có thể xác định độ cao của các lớp Heaviside, hơn nữa ông còn tìm ra một lớp nữa cao hơn lớp Heaviside gọi l
4.1. Hạt nhân nguyên tử
Các hệ phức đầu tiên từ quan điểm của các nhà giản hóa luận là thành phần cấu thành hạt nhân, tức là các neutron và proton được tạo thành từ các quark và gluon. Hệ thứ hai là các hạt nhân nguyên tử, theo một phép gần đúng bậc một, được tạo thành từ các hạt nucleon. Mô hình đầu tiên về cấu trúc hạt nhân là mô hình các lớp hạt nhân, do Maria Goeppert-Mayer và Johannes D. Jensen đưa ra vào cuối những năm 40, họ nhận thấy rằng ít nhất đối với các hạt nhân với hình gần như hình cầu thì các nucleon bên ngoài cùng cũng lấp đầy các mức năng lượng giống như các điện tử trong nguyên tử. Tuy vậy, trật tự của các nucleon lại khác với các điện tử và được xác định bởi một thế năng chung và bởi sự kết cặp spin-quĩ đạo rất mạnh của các lực hạt nhân. Mô hình của họ giải thích tại sao hạt nhân lại đặc biệt ổn định với một số xác định (con số kì diệu) các proton. Họ chia nhau giải Nobel vật lí năm 1963 cùng với Eugene Wigner, người đã công thức hóa các nguyên lí đối xứng cơ bản rất quan trọng trong vật lí hạt nhân và vật lí hạt.
Hạt nhân có số nucleon khác với con số kì diệu thì lại không phải là hình cầu. Niels Bohr đã từng nghiên cứu mô hình giọt chất lỏng áp dụng cho các hạt nhân bị biến dạng như vậy (có thể có dạng hình e-líp), và vào năm 1939 người ta thấy rằng nếu kích thích các hạt nhân bị biến dạng mạnh có thể dẫn đến sự phân chia hạt nhân, tức là hạt nhân bị phá vỡ thành hai mảnh lớn. Otto Hahn nhận giải Nobel hóa học năm 1944 cho phát hiện quá trình mới này. Hình phi cầu của hạt nhân biến dạng sinh thêm các bậc tự do cũng giống như sự dao động tập thể của các hạt nhân. James Rainwater, Aage Bohr (con trai của Niels Bohr) và Ben Mottelson đã phát triển các mô hình mô tả các kích thích hạt nhân và họ cùng nhận giải Nobel vật lí năm 1975.
Các mô hình về hạt nhân được nhắc đến trên đây không chỉ dựa trên các nguyên lí chung, có tính định hướng mà còn dựa trên các thông tin ngày càng tăng về phổ hạt nhân. Harold C. Urey đã phát hiện ra deuterium, một đồng vị nặng của Hidro, và vì thế, ông được trao giải Nobel về hóa học vào năm 1934. Fermi, Lawrence, Cockcroft, và Walton đã được nhắc đến ở phần trước đã phát triển các phương pháp để tạo ra các đồng vị hạt nhân không bền. Edwin M. McMillan và Glenn T. Seaborg nhận giải Nobel hóa học năm 1951 vì đã mở rộng bảng đồng vị hạt nhân tới các nguyên tố nặng nhất. Năm 1954, Walther Bothe và Max Born (người được nhắc đến ở trên) nhận giải Nobel vật lí vì phát triển phương pháp trùng hợp cho phép những người nghiên cứu quang phổ có thể lựa chọn các chuỗi bức xạ hạt nhân có liên quan từ phân rã hạt nhân. Phương pháp này lại hóa ra rất quan trọng, đặc biệt là trong nghiên cứu các trạnng thái kích thích của hạt nhân và tính chất điện từ của chúng.
4.2. Nguyên tử
Khi xem xét các hệ nhiều hạt, các lớp điện tử của các nguyên tử dễ nghiên cứu hơn của hạt nhân (hạt nhân thực ra bao gồm không chỉ các proton và neutron mà còn nhiều thành phần hơn nguyên tử, như là các hạt “ảo” có thời gian sống ngắn). Đó là do lực điện từ yếu và đơn giản hơn lực hạt nhân “mạnh” giữ các thành phần của hạt nhân lại với nhau. Cơ học lượng tử của Schrödinger, Heisenberg, và Pauli và phần mở rộng tương đối tính của Dirac đã có thể mô tả khá tốt các tính chất cơ bản của các điện tử trong nguyên tử. Tuy vậy, một bài toán có từ lâu vẫn chưa được giải quyết, tức là các vấn đề toán học liên quan đến các tương tác lẫn nhau giữa các điện tử sau khi tính đến lực hút của các hạt nhân mang điện tích dương. Một khía cạnh của vấn đề này đã được đế cập bởi một trong những người đạt giải Nobel hóa học mới đây (1998), đó là Walter Kohn. Ông đã phát triển phương pháp “hàm mật độ” có thể áp dụng vào các nguyên tử tự do cũng như áp dụng cho các điện tử trong các phân tử và trong chất rắn.
Vào đầu thế kỉ 20, bảng tuần hoàn các nguyên tố hóa học vẫn chưa hoàn thiện. Lịch sử ban đầu của giải Nobel bao gồm các phát hiện một số các nguyên tố còn thiếu. Lord Raleigh (John William Strutt) đã chú ý đến những dị thường về khối lượng nguyên tử tương đối khi các mẫu ô-xi và ni-tơ được tách trực tiếp từ không khí quanh ta chứ không phải tách chúng từ các thành phần hóa học. Ông kết luận rằng khí quyển phải có chứa thành phần chưa biết, đó là nguyên tố argon có khối lượng nguyên tử là 20. Ông nhận giải Nobel vật lí năm 1904, cùng năm với ngài William Ramsay nhận giải Nobel hóa học vì đã tách được nguyên tố Hê-li.
Trong nửa cuối của thế kỉ 20, đã có một sự phát triển vượt bậc về phổ và độ chính xác nguyên tử, mà nhờ đó người ta có thể đo được các dịch chuyển giữa các trạng thái nguyên tử hoặc phân tử mà rơi vào vùng vi sóng hoặc cùng ánh sáng khả kiến. Vào những năm 50, Alfred Kastler (người nhận giải Nobel năm 1966) và các đồng nghiệp cho thấy các điện tử trong các nguyên tử có thể được đặt vào các trạng thái kích thích lọc lựa bằng các sử dụng ánh sáng phân cực. Sau phân rã phóng xạ, ánh sáng phân cực cũng có thể làm cho spin của các nguyên tử ở trạng thái cơ bản định hướng.
Cảm ứng dịch chuyển tần số radio đã mở ra các khả năng đo một cách chính xác hơn trước rất nhiều các tính chất của các trạng thái bị lượng tử hóa của các điện tử trong nguyên tử. Một hướng phát triển song song đã dẫn đến việc phát hiện ra maser và laser dựa trên “khuyếch đại phát xạ kích thích sóng radio” trong các trường sóng điện từ ở vùng vi sóng và khả kiến (ánh sáng) – các hiệu ứng mà về mặt nguyên lí đã được tiên đoán từ các phương trình của Einstein vào năm 1917 nhưng đã không được quan tâm đặc biệt cho đến tận đầu những năm 50.
Charles H. Townes đã phát triển maser đầu tiên vào năm 1958. Nikolay G. Basov và Aleksandr M. Prokhorov đã thực hiện công trình lí thuyết về nguyên lí maser. Maser đầu tiên sử dụng một dịch chuyển kích thích trong phân tử a-mô-ni-ắc. Nó đã phát ra bức xạ vi sóng mạnh không giống như các bức xạ tự nhiên (với các photon có các pha khác nhau). Độ sắc nét của tần số của maser ngay lập tức trở thành một công cụ quang trọng trong kĩ thuật, xác định thời gian và các mục đích khác. Townes nhận nửa giải Nobel vật lí năm 1964, Basov và Prokhorov chia nhau một nửa giải còn lại.
Đối với bức xạ khả kiến, sau này laser được phát triển trong một số phòng thí nghiệm. Nicolaas Bloembergen và Arthur L. Schawlow được nhận nửa giải Nobel năm 1981 cho công trình nghiên cứu về phổ laser chính xác của các nguyên tử và phân tử. Một nửa giải của năm đó được trao cho Kai M. Siegbahn (con trai của Manne Siegbahn), người đã phát triển một phương pháp có độ chính xác cao trong việc xác định phổ nguyên tử và phân tử dựa vào các điện tử phát ra từ các lớp điện tử bên trong khi bị tác động của chùm tia X có năng lượng đã được xác định. Phổ điện tử của ông được sử dụng làm công cụ phân tích trong rất nhiều ngành của vật lí và hóa học.
Sự tác động có điều khiển giữa các điện tử của nguyên tử và các trường điện từ tiếp tục cung cấp những thông tin chi tiết hơn về cấu trúc của các trang thái của điện tử trong nguyên tử.
Norman F. Ramsey đã phát triển các phương pháp chính xác dựa trên sự hưởng ứng của các điện tử tự do trong chùm nguyên tử với trường điện từ tần số radio, Wolfgang Paul đã phát minh ra các “bẫy” nguyên tử tạo thành từ các điện trường và từ trường tác động lên toàn bộ thể tích mẫu. Nhóm nghiên cứu của Hans G. Dehmelt là những người đầu tiên cách li được các hạt riêng lẻ (trong trường hợp này là các phản điện tử) cũng như là các nguyên tử riêng lẻ trong các bẫy như vậy. Lần đầu tiên, các nhà thực nghiệm có “thể giao tiếp” được với các nguyên tử riêng biệt bằng các tín hiệu vi sóng và laser. Điều này cho phép nghiên cứu các khía cạnh mới của tính chất cơ học lượng tử và làm tăng độ chính xác hơn nữa trong việc xác định tính chất nguyên tử và chuẩn hóa thời gian. Paul và Dehmelt nhận một nửa giải Nobel năm 1989 và một nửa giải còn lại được trao cho Ramsey.
Bước cuối cùng trong tiến bộ này là làm cho các nguyên tử trong các bẫy như vậy chuyển động chậm đến mức, ở trạng thái cân bằng nhiệt trong môi trường khí, chúng có thể tương ứng với nhiệt độ chỉ vài micro Kenvin. Điều đó được thực hiện bằng cách cho chúng vào để làm nguội bằng laser thông qua một tập hợp các hệ thống được thiết kế rất thông minh do Steven Chu, Claude Cohen-Tannoudji và William D. Phillips thực hiện khi nhóm này nghiên cứu thao tác lên các nguyên tử thông qua quá trình va chạm với các photon laser. Công trình của họ được nhìn nhận bằng giải Nobel năm 1997, hứa hẹn những ứng dụng quan trọng trong kĩ thuật đo lường bổ sung thêm tính chính xác trong việc xác định định lượng nguyên tử.
4.3 Phân tử và plasma
Các phân tử tạo thành từ các nguyên tử. Chúng tạo ra mức phức tạp tiếp theo khi nghiên cứu các hệ nhiều hạt. Nhưng các nghiên cứu phân tử thường được coi như một nhánh của học (ví dụ như giải Nobel hóa học năm 1936 được trao cho Petrus J. W. Debye), và hiếm khi được trao giải Nobel về vật lí. Chỉ có một ngoại lệ đó là công trình của Johannes Diderik van der Waals, ông đã đưa ra các phương trình trạng thái của các phân tử tcho chất khí khi tính đến tương tác lẫn nhau giữa các phân tử và sự giảm thể tích tự do do gây ra bởi kích thước hữu hạn của chúng. Các phương trình van der Waals là những điểm rất quan trọng trong việc mô tả quá trình ngưng tụ của các chất khí thành chất lỏng. Ông nhận giải Nobel vật lí năm 1910. Jean B. Perrin nghiên cứu chuyển động của các hạt nhỏ lơ lửng trong nước và nhận giải Nobel năm 1926. Nghiên cứu của ông cho phép khẳng định lí thuyết thống kê của Einstein về chuyển động Brown cũng như các định luật điều khiển quá trình cân bằng của các hạt lơ lửng trong chất lỏng khi chịu tác dụng của trọng lực.
Năm 1930, ngài Sir C. Venkata Raman nhận giải Nobel vật lí cho các quan sát của ông chứng tỏ rằng ánh sáng tán xạ từ các phân tử bao gồm các thành phần có tần số bị dịch chuyển tương ứng với ánh sáng đơn sắc. Sự dịch chuyển này gây bởi sự tăng hoặc giảm năng lượng đặc trưng của phân tử khi chúng thay đổi chuyển động quay hoặc dao động. Phổ Raman nhanh chóng trơ thành nguồn thông tin quan trọng cung về cấu trúc và động học phân tử.
Plasma là trạng thái khí của vật chất trong đó các nguyên tử hoặc phân tử bị ion hóa rất mạnh. Lực điện từ giữa các ion dương và giữa các ion và điện tử đóng một vai trò nổi trội điều này làm tăng tính phức tạp khi nghiên cứu plasma so với nguyên tử hoặc phân tử trung tính. Năm 1940, Hannes Alfvén đã chứng minh rằng một loại chuyển động tập thể mới, gọi là “sóng từ-thủy động lực học” có thể được sinh ra trong các hệ plasma. Các sóng này đóng một vai tròn quan trọng xác định tính chất của plasma, trong phòng thí nghiệm cũng như trong khí quyển trái đất và trong vũ trụ. Alfvén nhận nửa giải Nobel năm 1970.
4.4. Vật lí chất rắn
Các tinh thể được đặc trưng bởi sự xắp xếp đều đặn của các nguyên tử. Sau khi phát hiện ra tia X không lâu, Max von Laue nhận thấy rằng, các tia X bị tán xạ khi đi qua các tinh thể chất rắn giống như ánh sáng đi qua một cách tử quang học. Có hiện tượng này là do bước sóng của tia X thông thường trùng với khoảng cách giữa các nguyên tử trong chất rắn. Ngài William Henry Bragg (cha) and William Lawrence Bragg (con) lần đầu tiên dùng tia X để đo khoảng cách giữa các nguyên tử và phân tích sự sắp xếp hình học của các nguyên tử trong các tinh thể đơn giản. Vì các công trình tiên phong trong việc nghiên cứu tinh thể học bằng tia X (mà sau này được phát triển đến trình độ rất cao), họ được trao giải Nobel vật lí, Laue năm 1914 và cha con Bragg năm 1915.
Cấu trúc của tinh thể là trạng thái ổn định nhất trong nhiều trạng thái rắn mà nguyên tử có thể được xắp xếp tại nhiệt độ và áp suất thông thường. Vào những năm 30, Percy W. Bridgman đã phát minh ra các dụng cụ mà nhờ đó có thể nghiên cứu sự thay đổi cấu trúc tinh thể, tính chất điện, từ, nhiệt của chất rắn dưới áp suất cao. Rất nhiều tinh thể thể hiện các chuyển pha dưới các điều kiện đặc biệt như vậy. Sự sắp xếp hình học của các nguyên tử bị thay đổi đột ngột tại áp suất nhất định. Bridgman nhận giải Nobel vật lí năm 1946 cho các phát minh trong lĩnh vực vật lí áp suất cao.
Vào những năm 40, nhờ sự phát triển của các máy phản ứng phân rã hạt nhân, các nhà thực nghiệm có thể thu được các neutron năng lượng thấp. Người ta cũng thấy rằng, giống như tia X, các neutron cũng rất hiệu quả trong việc xác định cấu trúc tinh thể bởi vì bước sóng de Broglie của hạt nhân cũng cỡ khoảng cách giữa các nguyên tử trong chất rắn. Clifford G. Shull đã có nhiều đóng góp cho sự phát triển kĩ thuật nhiễu xạ neutron trong việc xác định cấu trúc tinh thể, và cũng cho cho biết rằng, sự sắp xếp của các mô-men từ nguyên tử trong các vật liệu có trật tự từ có thể làm tăng nhiễu xạ neutron, cung cấp một công cụ rất mạnh để xác định cấu trúc từ.
Shull nhận giải Nobel vật lí năm 1994 cùng với Bertram N. Brockhouse, chuyên gia về một khía cạnh khác của tán xạ neutron trên chất rắn: khi các neutron kích thích kiểu dao động phonon trong tinh thể gây ra suy giảm năng lượng. Do đó, Brockhouse đã phát triển máy phổ neutron 3 chiều, nhờ đó có thể thu được toàn vẹn các đường cong tán sắc (năng lượng của phonon là một hàm của véc-tơ sóng). Các đường cong tương tự có thể thu được đổi với dao động của mạng từ (kiểu magnon).
John H. Van Vleck có đóng góp đặc biệt cho lí thuyết từ học trong chất rắn vào những năm sau khi ra đời cơ học lượng tử. Ông đã tính toán các ảnh hưởng của liên kết hóa học lên các nguyên tử thuận từ và giải thích sự phụ thuộc vào nhiệt độ và từ trường ngoài của tính chất từ. Đặc biệt ông đã phát triển lí thuyết trường tinh thể của các hợp chất của các kim loại chuyển tiếp, đó là điều vô cùng quan trọngtrong việc tìm hiểu các tâm hoạt động trong các hợp chất dùng cho vật lí laser cũng như sinh học phân tử. Ông cùng nhận giải Nobel vật lí với Philip W. Anderson và ngài Nevill F. Mott (xem dưới đây).
Các nguyên tử từ có thể có các mô-men từ sắp xếp theo cùng một phương trong một thể tích nhất định (vật liệu như vậy được gọi là vật liệu sắt từ), hoặc các mô-men có cùng độ lớn nhưng lại sắp xếp đan xen “thuận” rồi đến “nghịch” (vật liệu phản sắt từ), hoặc sắp xếp đan xen nhưng độ lớn lại khác nhau (vật liệu ferri từ,…). Louis E. F. Néel đã đưa ra các mô hình cơ bản mô tả các vật liệu phản sắt từ và ferri từ, đó là các thành phần quan trọng trong nhiều dụng cụ chất rắn. Các vật liệu đó được nghiên cứu rất nhiều bằng kĩ thuật nhiễu xạ neutron đã nói trên đây. Néel nhận một nửa giải Nobel vật lí năm 1970. (*Hiện nay ở CNRS Grenoble có một phòng thí nghiệm về từ học rất nổi tiếng mang tên ông, ông cũng được coi là cha đẻ của ngành khoa học tự nhiên Grenoble, ông từng là giáo sư của trường Joseph Fourier – Grenoble 1 mà rất nhiều AEVG đang theo học*).
Trật tự của các nguyên tử trong tinh thể chất rắn cũng như rất nhiều loại trật tự từ khác nhau là những ví dụ của các hiện tượng trật tự nói chung trong tự nhiên khi các hệ tìm thấy sự sắp xếp sao cho có lợi về mặt năng lượng bằng cách chọn những trạng thái đối xứng nhất định. Các hiện tượng tới hạn, là các hiện tượng mà tính đối xứng sắp bị thay đổi (ví dụ khi nhiệt độ thay đổi chẳng hạn), có tính phổ quát cao cho các loại chuyển pha khác nhau, mà trong đó bao gồm cả chuyển pha từ. Kenneth G. Wilson, người nhận giải Nobel vật lí năm 1982, đã phát triển một lí thuyết gọi là lí thuyết tái chuẩn hóa cho các hiện tượng tới hạn liên hệ với các chuyển pha, một lí thuyết còn được ứng dụng trong lí thuyết trường của vật lí hạt cơn bản.
Các tinh thể lỏng tạo ra một lớp vật liệu đặc biệt có rất nhiều đặc tính lí thú, trên cả quan điểm tương tác cơ bản trong chất rắn cũng như các ứng dụng kĩ thuật. Pierre-Gilles de Gennes đã phát triển lí thuyết cho tinh thể lỏng và sự chuyển giữa các pha có độ trật tự khác nhau. Ông cũng sử dụng cơ học thống kê để mô tử sự sắp xếp và động lực học của các chuỗi polymer, và bằng cách đó cho thấy rằng, các phương pháp được phát triển cho các hiện tượng trật tự trong các hệ đơn giản có thể được khái quát hóa cho các hệ phức tạp có mặt trong “chất rắn mềm”. Vì đóng góp đó, ông nhận giải Nobel vật lí năm 1991.
Một dạng chất lỏng đặc biệt đã được quan tâm nghiên cứu đó là chất lỏng hê-li. Tại áp suất thông thường, hê-li là chất hóa lỏng ở nhiệt độ thấp nhất. Hê-li cũng có hiệu ứng đồng vị mạnh nhất, từ hê-li (4) hóa rắn ở nhiệt độ 4.2 độ Kenvin, cho đến hê-li (3) hóa rắn ở nhiệt độ 3.2 độ Kenvin. Heike Kamerlingh-Onnes là người đầu tiên hóa lỏng hê-li vào năm 1909. Ông nhận giải Nobel vật lí năm 1913 cho các kết quả của hê-li lỏng và cho các nghiên cứu của ông về tính chất của vật chất tại nhiệt độ thấp. Lev D. Landau đã đưa ra các khái niệm cơ bản (ví dụ như chất lỏng Landau) liên quan đến các hệ nhiều hạt trong chất rắn và áp dụng các khái niệm đó vào lí thuyết hê-li lỏng để giải thích các hiện tượng đặc biệt của hê-li (4) như là hiện tượng siêu chảy (xem dưới đây), kích thích “roton”, và các hiện tượng âm học. Ông được trao giải Nobel năm 1962.
Vào những năm 20 và 30, Pyotr L. Kapitsa đã phát triển một số kĩ thuật thực nghiệm để thực hiện và nghiên cứu các hiện tượng ở nhiệt độ thấp. Ông nghiên cứu nhiều khía cạnh của hê-li (4) lỏng và cho thấy rằng hê-li lỏng có tính siêu chảy (tức là chảy không có ma sát) khi nhiệt độ thấp hơn 2.2 độ Kenvin. Sau này hiện tượng siêu chảy được hiểu là sự thể hiện của mối liên hệ lượng tử giữa hiện tượng ngưng tụ Bose-Einstein (được tiên đoán bằng lí thuyết vào năm 1920) và nhiều tính chất giống như trạng thái siêu dẫn của điện tử trong một số chất dẫn điện đặc biệt. Kapitsa được trao một nửa giải Nobel vật lí năm 1978.
Hê-li (3) thì lại thể hiện các hiện tượng đặc biệt, vì mỗi hạt nhân hê-li có spin khác không chứ không giống như hê-li (4). Do đó, nó giống như là các hạt fermion và không bị ngưng tụ Bose-Einstein như các hạt boson. Tuy vậy, giống như các vật liệu siêu dẫn (xem dưới đây), các cặp hạt có spin bán nguyên có thể tạo thành các hạt “giả boson” và có thể bị ngưng tụ gây nên trạng thái siêu chảy. Hiện tượng siêu chảy của hê-li (3) xảy ra tại nhiệt độ thấp hơn của hê-li (4) hàng ngàn lần và đã được David M. Lee, Douglas D. Osheroff và Robert C. Richardson phát hiện ra, họ nhận giải Nobel vật lí năm 1996. Họ đã quan sát thấy các pha siêu chảy khác nhau cho thấy cấu trúc xoáy phức tạp và các hiện tượng lượng tử rất thú vị.
Các điện tử trong chất rắn có thể bị định xứ ở xung quanh các nguyên tử của chúng trong các chất cách điện, hoặc chúng có thể chuyển động qua lại giữa các vị trí của các nguyên tử trong các chất dẫn điện hoặc chất bán dẫn. Vào đầu thế kỉ 20, người ta biết rằng các kim loại có thể phát ra các điện tử khi bị nung nóng, nhưng người ta không biết điện tử phát ra là do bị kích thích nhiệt hay là do các tương tác hóa học với môi trường khí xung quanh. Bằng các thực nghiệm tiến hành trong môi trường có chân không cao, cuối cùng, Owen W. Richardson đã xác định rằng sự phát xạ của điện tử là do hiệu ứng nhiệt và ông cũng thiết lập định luật phân bố của của các điện tử theo vận tốc. Và do đó, Richardson nhận giải Nobel năm 1928.
Cấu trúc điện tử xác định các tính chất điện, từ và quang của chất rắn và nó còn có vai trò quan trọng đến tính chất cơ và nhiệt nữa. Một trong những nhiệm vụ quan trọng của các nhà vật lí thế kỉ 20 là đo trạng thái và động học của các điện tử và mô hình hóa các tính chất của chúng để hiểu các tổ chức của các điện tử trong các loại chất rắn khác nhau. Điều rất tự nhiên là các hiện tượng khác thường đã thu hút mạnh mẽ các nhà vật lí chất rắn. Điều đó được phản ánh trong giải Nobel vật lí: vài giải đã được trao các các phát hiện liên quan đến siêu dẫn và các hiện tượng đặc biệt thể hiện trong một số chất bán dẫn.
Siêu dẫn lần đầu tiên được phát hiện từ rất sớm, từ năm 1911. Kamerlingh-Onnes đã thấy rằng điện trở của thủy ngân giảm xuống nhỏ hơn một phần tỉ giá trị bình thường khi bị làm lạnh thấp hơn một nhiệt độ chuyển pha Tc khoảng 4 độ Kenvin. Như được nhắc ở phần trên, ông đã nhận giải Nobel năm 1913. Tuy vậy, một thời gian dài người ta không hiểu tại sao các điện tử có thể chuyển động mà không bị cản trở trong các chất siêu dẫn tại nhiệt độ thấp. Nhưng vào đầu những năm 60, Leon N. Cooper, John Bardeen và J. Robert Schrieffer đã đưa ra lí thuyết dựa trên ý tưởng là các cặp điện tử (có spin và hướng chuyển động ngược nhau) có thể giảm một lượng năng lượng Eg bằng cách chia xẻ một cách chính xác cùng một độ biến dạng của mạng tinh thể khi chúng chuyển động. Các cặp Cooper này hành động giống như các hạt boson. Sự tạo cặp này cho phép chúng chuyển động như một chất lỏng liên kết, không bị ảnh hưởng khi các kích thích nhiệt (có năng lượng là kT) nhỏ hơn năng lượng tạo thành khi kết cặp (Eg). Lí thuyết BCS này được trao giải Nobel vật lí năm 1972.
Đột phá trong việc hiểu cơ sở cơ học năng lượng này dẫn đến các tiến bộ trong các mạch siêu dẫn: Brian D. Josephson đã phân tích sự dịch chuyển của các hạt tải điện giữa hai kim loại siêu dẫn được ngăn cách bởi một lớp vật liệu dẫn điện thường rất mỏng. Ông tìm thấy rằng pha lượng tử xác định tính chất dịch chuyển là một hàm dao động của điện thế bên ngoài đặt lên chuyển tiếp này. Hiệu ứng Josephson có các ứng dụng quan trọng trong các phép đo chính xác vì nó thiết lập mối liên hệ giữa điện thế và tần số. Josephson nhận một nửa giải Nobel vật lí năm 1973. Ivar Giaever, người đã phát minh và nghiên cứu các tính chất chi tiết của “chuyển tiếp đường ngầm” này (một hệ thống điện tử dựa trên chất siêu dẫn) chia nhau một nửa giải còn lại với Leo Esaki cho công trình nghiên cứu về hiệu ứng đường ngầm trong chất bán dẫn (xem dưới đây).
Mặc dầu có khá nhiều các hợp kim và hợp chất siêu dẫn được phát hiện trong khoảng 75 năm sau phát hiện của Kamerlingh-Onnes, hiện tượng siêu dẫn mãi được xem như là hiện tượng chỉ xảy ra tại nhiệt độ thấp, với nhiệt độ chuyển pha siêu dẫn thấp hơn 20 độ Kenvin. Cho nên khi J. Georg Bednorz và K. Alexander Müller cho thấy rằng Ô-xít Lanthan-đồng có pha thêm Ba-rri có nhiệt độ chuyển pha là 35 độ Kenvin thì mọi người rất ngạc nhiên. Và ngay sau đó, các phòng thí nghiệm khác công bố các hợp chất có cấu trúc tương tự như thế có tính siêu dẫn ở nhiệt độ khoảng 100 độ Kenvin. Phát hiện về “siêu dẫn nhiệt độ cao” này khởi động một làn sóng trong vật lí hiện đại: tìm hiểu có chế có bản cho tính siêu dẫn của các vật liệu đặc biệt này. Bednorz and Müller nhận giải Nobel năm 1987.
Chuyển động của các điện tử trong kim loại ở trạng thái dẫn điện bình thường đã được mô hình hóa về lí thuyết đến một độ phức tạp chưa từng có từ khi có mặt của cơ học lượng tử. Một trong những bước tiến lớn ban đầu là việc đưa vào khái niệm sóng Bloch, hàm sóng được lấy tên của nhà vật lí Felix Bloch (người nhận nửa giải Nobel vật lí năm 1952 cho công trình nghiên cứu về cộng hưởng từ). Một khái niệm quan trọng nữa là “chất lỏng điện tử” trong các chất dẫn điện do Lev Landau (xem phần hê-li lỏng). Philip W. Anderson đã có những đóng góp quan trọng vào lí thuyết cấu trúc điện tử của các kim loại, đặc biệt là các bất đồng nhất trong các hợp kim và các nguyên tử từ tạp chất trong các kim loại. Nevill F. Mott đã nghiên cứu các điều kiện chung cho tính dẫn điện của điện tử trong chất rắn và đưa ra các công thức xác định các điểm mà một chất bán dẫn biến thành một chất dẫn điện (chuyển pha Mott) khi thành phần hoặc các thông số bên ngoài bị thay đổi. Anderson và Mott chia nhau một nửa giải Nobel năm 1977 và một nửa giải được trao cho John H. Van Vleck cho các nghiên cứu lí thuyết về cấu trúc điện tử của các hệ từ và mất trật tự.
Một giải Nobel vật lí trước đây (1920) đã được trao cho Charles E. Guillaume cho phát hiện cho thấy rằng giãn nở nhiệt của một số thép ni-ken (hợp kim được gọi là invar) bằng không. Giải Nobel này được trao chủ yếu bởi tầm quan trọng của các hợp kim invar trong các phép đo chính xác được dùng trong vật lí, ngành đo đạc và đặc biệt là thước mét chuẩn được đặt ở Paris. Các hợp kim này được dùng rất rộng rãi trong các dụng cụ có độ chính xác cao như là đồng hồ, … Các cơ sở lí thuyết về sự phụ thuộc vào nhiệt độ của độ giãn nở chỉ mới được giải thích gần đây. Và mới đây (1998), Walter Kohn nhận giải Nobel hóa học cho các phương pháp của ông khi xử lí các tương quan trao đổi lượng tử , mà nhờ đó người ta có thể vượt qua các giới hạn trong tính toán cấu trúc điện tử trong chất rắn và các phân tử.
Trong các chất bán dẫn, độ linh động của các điện tử bị giảm đi rất mạnh do có sự tồn tại của vùng cấm năng lượng đối với các điện tử gọi là các khe năng lượng. Sau khi người ta hiểu được vai trò cơ bản của các tạp chất cho điện tử và nhận điện tử trong si-líc siêu sạch (và sau này còn có các vật liệu khác), các chất bán dẫn được sử dụng làm các bộ phận trong điện kĩ thuật. William B. Shockley, John Bardeen (xem thêm lí thuyết BCS) và Walter H. Brattain đã tiến hành các nghiên cứu cơ bản về siêu dẫn và đã phát triển transistor loại một. Đó là bình minh của kỉ nguyên “linh kiện điện tử”. Họ cùng nhận giải Nobel năm 1956.
Sau này Leo Esaki đã phát triển đi-ốt đường ngầm, một linh kiện điện tử có điện trở vi phân âm, đó là một tính chất kĩ thuật rất thú vị. Nó tạo thành từ hai chất bán dẫn pha tạp loại “n” và loại “p”, có một đầu chuyển dư điện tử và một đầu khác thiếu điện tử. Hiệu ứng đường ngầm xuất hiện khi điện thế dịch lớn hơn khe năng lượng trong các chất bán dẫn. Ông chia giải Nobel vật lí năm 1973 với Brian D. Josephson.
Với kĩ thuật hiện đại, người ta có thể tạo các màng mỏng cấu trúc xác định từ các vật liệu bán dẫn và chúng thể tiếp xúc trực tiếp với nhau. Với cấu trúc không đồng nhất như vậy, con người không bị giới hạn vào các khe năng lượng trong các chất bán dẫn như si-lic hoặc germani nữa. Herbert Kroemer đã phân tích lí thuyết về độ linh động của các điện tử và lỗ trống trong các chuyển tiếp không đồng nhất. Lí thuyết của ông dẫn đến việc tạo ra các transistor với các đặc trưng được cải tiến rất nhiều mà sau này gọi là HEMT (transistor có độ linh động điện tử cao), các HEMT rất quan trọng đối với các linh kiện điện tử tốc độ cao ngày nay. Kroemer cũng giả thiết rằng các cấu trúc không đồng nhất kép có thể tạo điều kiện cho hoạt động của laser, cùng khoảng thời gian với Zhores I. Alferov đưa ra ý tưởng như thế. Sau này Alferov đã tạo ra laser bán dẫn xung đầu tiên vào năm 1970. Sự kiện này là điểm khởi đầu của kỉ nguyên các dụng cụ quang điện hiện này đang dùng trong các đi-ốt laser, đầu đọc đĩa CD, đầu đọc mã vạch và cáp quang viễn thông. Và gần đây, Alferov và Kroemer chia nhau một nửa giải Nobel vật lí năm 2000, một nửa giải còn lại về tay Jack S. Kilby, đồng phát minh mạch điện tử tích hợp (xem phần sau Vật lí và Kĩ thuật).
Khi áp một thế điện cực lên các hệ cấu trúc không đồng nhất, người ta có thể tạo ra “các màng ngược”, trong đó các hạt tải điện chỉ chuyển động trong không gian hai chiều. Các màng như vậy lại hóa ra có các tính chất rất thú vị và kì lạ. Năm 1982, Klaus von Klitzing phát hiện ra hiệu ứng Hall lượng tử. Khi một từ trường mạnh đặt vuông góc với mặt phẳng của màng giả hai chiều, thì các điều kiện lượng tử lại không tăng một cách tuyến tính với sự tăng của từ trường mà lại tăng một cách nhảy bậc ở biên của mẫu. Điện trở Hall giữa các bậc này có giái trị h/ie2 trong đó i là các số nguyên tương ứng với các quĩ đạo điện tử bị lượng tử hóa. Hiệ ứng này cho phép có thể đo tỉ số giữa các hằng số cơ bản rất chính xác, nó có hệ quả quan trọng trong kĩ thuật đo lường, von Klitzing nhận giải Nobel vật lí năm 1985.
Một ngạc nhiên nữa đến ngay sau khi Daniel C. Tsui và Horst L. Störmer thực hiện các nghiên cứu kĩ hơn về hiệu ứng Hall lượng tử sử dụng các màng ngược trong các vật liệu siêu sạch. Trạng thái ổn định xuất hiện trong hiệu ứng Hall không chỉ đối với từ trường tương ứng với sự lấp đầy của các quĩ đạo bởi một, hai, ba v.v. giá trị điện tích của điện tử mà còn đối với các điện tích không nguyên!. Điều này chỉ có thể được hiểu dựa vào một khái niệm về chất lỏng lượng tử mới mà ở đó chuyển động của các điện tử độc lập có điện tích e được thay thế bởi các kích thích trong một hệ nhiều hạt mà hệ này cư xử (trong một từ trường mạnh) như thể các điện tích có giá trị e/3, e/5,… tham gia vào. Robert B. Laughlin phát triển lí thuyết mô tả trạng thái mới của vật chất này và chia giải Nobel vật lí năm 1998 với Tsui and Störmer.
Đôi khi các phát hiện trong một lĩnh vực của vật lí lại hóa ra có các ứng dụng quan trọng trong các lĩnh vực vật lí khác. Một ví dụ liên quan đến vật lí chất rắn đó là quan sát của Rudolf L. Mössbauer vào cuối những năm 50. Hạt nhân của nguyên từ hấp thụ có thể bị kích thích cộng hưởng bởi các tia gamma phát ra từ các nguyên tử phát xạ được chọn một cách hợp lí khi các nguyên tử trong cả hai trường hợp được bắn ra sao cho sự giật lùi của chúng loại trừ nhau. Năng lượng bị lượng tử hóa của hạt nhân trong điện từ trượng nội của chất rắn đó có thể được xác định vì năng lượng đó tương ứng với các vị trí khác nhau của sự cộng hưởng mà sự cộng hưởng này rất sắc nét. Phát hiện này trở nên quan trọng trong việc xác định cấu trúc điện từ của nhiều vật liệu và Mössbauer nhận một nửa giải Nobel vật lí năm 1961 cùng với R. Hofstadter.
5. Vật lí và kĩ thuật
Rất nhiều các phát minh thực nghiệm và lí thuyết được nhắc cho đến nay có một ảnh hưởng lớn đến sự phát triển của các dụng cụ kĩ thuật bằng việc mở ra những lĩnh vực vật lí hoàn toàn mới hoặc đưa ra các ý tưởng để có thể tạo ra các dụng cụ kĩ thuật. Các ví dụ rất dễ thấy là công trình của Shockley, Bardeen, và Brattain mà dẫn đến transitor và khởi đầu cuộc cách mạng điện tử; các nghiên cứu cở bản của Townes, Basov, và Prokhorov dẫn đến việc phát triển maser và laser. Cũng nên nhắc lại rằng các máy gia tốc hạt hiện nay là các công cụ rất quan trọng trong một vài lĩnh vực khoa học vật liệu và y học. Các công trình khác được vinh danh bằng giải Nobel ngày càng có thiên hướng về mặt kĩ thuật hoặc chúng có tầm quan trọng đặc biệt trong việc xây dựng các linh kiện để phát triển ngành liên lạc và thông tin.
Một giải Nobel cách đây khá lâu (1912) đã được trao cho Nils Gustaf Dalén cho phát minh về “van mặt trời” (sun-valve) tự động được dùng rộng rãi trong các cột mốc và phao trong ngành hàng hải. Phát minh đó dựa trên sự khác nhau về bức xạ nhiệt từ các vật có độ phản xạ ánh sáng khác nhau: một trong số ba thanh song song trong dụng cụ của ông có màu đen, điều này làm tăng sự sai khác trong việc hấp thụ nhiệt và dãn nở nhiệt của các thanh trong thời gian mặt trời chiếu vào. Hiệu ứng này được dùng để ngắt nguồn cấp khí tự động vào ban ngày và làm giảm nhiều nhu cầu bảo dưỡng trên biển.
Các dụng cụ và kĩ thuật quang là những chủ đề cho vài giải Nobel. Khoảng đầu thế kỉ 20, Gabriel Lippmann đã phát triển một phương pháp chụp ảnh màu sử dụng hiệu ứng giao thoa ánh sáng. Một chiếc gương được đặt tiếp xúc với một thể nhũ tương nhạy quang phủ trên một tấm kim loại sao cho khi chúng bị chiếu sáng, ánh sáng phản xạ trong chiếc gương sẽ làm tăng sóng đứng trong thể nhũ tương đó. Việc tráng ảnh làm cho các hạt bạc bị (trong thể nhũ tương đó) phân tầng khi gương chiếu sáng lên tấm kim loại và ảnh tạo thành có màu sắc tự nhiên như thật. Giải Nobel năm 1908 được trao cho Lippmann. Không may, phương pháp của Lippmann mất nhiều thời gian phơi sáng. Sau này phương pháp đó bị thay thế bởi các kĩ thuật nhiếp ảnh khác nhưng nó lại có nhiều ứng dụng trong kĩ thuật tạo ảnh ba chiều chất lượng cao.
Trong hiển vi quang học, Frits Zernike cho thấy rằng thậm chí các vật hấp thụ bức xạ rất yếu (trong suốt khi nhìn bằng mắt thường) có thể nhìn thấy được nếu chúng tạo thành từ những vùng có hệ số khúc xạ ánh sáng khác nhau. Trong kính “hiển vi nhạy pha” của Zernike, người ta có thể phân biệt các vệt sáng có pha bị thay đổi khi đi qua các vùng không đồng nhất. Kính hiển vi loại này có tầm quan trọng đặc biệt trong việc quan sát các mẫu sinh học. Zernike nhận giải Nobel vật lí năm 1953. Vàn những năm 40, Dennis Gabor đề ra nguyên lí ảnh ba chiều. Ông tiên đoán rằng nếu tia sáng tới có thể giao thoa với tia phản xạ từ một mảng hai chiều thì có thể tạo được một ảnh ba chiều của vật thể. Tuy vậy, việc thực hiện ý tưởng này phải đợi đến khi laser được phát hiện. laser có thể cung cấp ánh sáng cố kết cần thiết cho quan sát hiện tượng giao thoa nói ở trên. Gabor nhận giải Nobel năm 1971.
Hiển vi điện tử có ảnh hưởng sâu rộng trên nhiều lĩnh vực khoa học tự nhiên. Ngay sau khi C. J. Davisson and G. P. Thomson phát hiện ta bản chất sóng của điện tử, người ta nhận thấy rằng bước sóng ngắn của điện tử năng lượng cao có thể làm tăng độ phân giải so với hiển vi quang học. Ernst Ruska tiến hành các nghiên cứu cơ bản về quang điện tử và thiết kế kính hiển vi điện tử đầu tiên họat động vào những năm đầu của thập niên 30. Nhưng cũng phải mất hơn 50 sau ông mới nhận giải Nobel vật lí.
Ruska nhận một nửa giải Nobel vật lí vào năm 1986, nửa giải còn lại được chia đều cho Gerd Binnig và Heinrich Rohrer, hai người đã phát triển một phương pháp khác hẳn để thu được các bức ảnh với độ phân giải cực cao. Phương pháp của họ được ứng dụng trong nghiên cứu về mặt chất rắn và dựa trên hiệu ứng đường ngầm của các điện tử. Các điện tử của các nguyên tử ở một đầu kim loại rất nhọn có thể chui sang các nguyên tử tử trên bề mặt chất rắn khi đầu nhọn kim loại đó được di chuyển đến rất gần bề mặt (khoảng 1 nm). Bằng cách giữ cho dòng điện tử chui ngầm đó cố định và di chuyển đầu nhọn theo bề mặt chất rắn, người ta có thể có được bức ảnh ba chiều của bề mặt chất rắn cần nghiên cứu. Bằng phương pháp này, ta có thể nhìn thấy từng nguyên tử trên bề mặt.
+++
Viễn thông là một trong những thành tựu kĩ thuật vĩ đại của thế kỉ 20. Vào những năm 90 thế kỉ 19, Guglielmo Marconi đã làm thí nghiệm với sóng điện từ của Hetz mới được phát hiện vào lúc đó. Ông là người đầu tiên liên lạc một trong những trạm phát sóng trên mặt đất với một “ăng-ten” đặt trên cao có vai trò tương tự như một trạm thu sóng. Trong khi các thí nghiệm đầu tiên của Hetz được tiến hành trong phạm vi phòng thí nghiệm thì Marconi đã mở rộng khoảng cách truyền tín hiệu đến vài km. Carl Ferdinand Braun (cha đẻ của ống Braunian, dao động kế chùm ca-tốt đầu tiên) đã thực hiện một cải tiến, ông đưa mạch cộng hưởng vào các máy phát dao động của Hetz. Độ hòa âm và khả năng tạo các dao động mạnh không bị chặn làm tăng dải truyền sóng, và vào năm 1901, Marconi đã thành công trong việc thu phát sóng vô tuyết vượt Đại Tây Dương. Marconi và Braun cùng nhận giải Nobel vật lí năm 1909. Vào thời điểm này, người ta vẫn không hiểu làm thế nào mà sóng vô tuyến có thể truyền với những khoảng cách xa (thực tế, chúng có thể truyền đến bên kia trái đất), nhớ rằng mọi người đều biết sóng vô tuyến có bản chất giống ánh sáng, chúng truyền theo đường thẳng trong không gian. Cuối cùng thì ngài Edward V. Appleton đã chứng minh bằng thực nghiệm rằng một giả thiết trước đó của Heaviside và Kennelly cho rằng sóng vô tuyến bị phản xạ giữa các lớp không khí có độ dẫn khác nhau trong khí quyển là đúng. Appleton đã đo giao thoa của sóng trực tiếp và sóng phản xạ với các bước sóng khác nhau và có thể xác định độ cao của các lớp Heaviside, hơn nữa ông còn tìm ra một lớp nữa cao hơn lớp Heaviside gọi l