Vận dụng bđt Cauchy

M

manhnguyen0164

M

minhhieupy2000

1

$a_1+1 \ge 2\sqrt{a_1}$
$a_2+1 \ge 2\sqrt{a_2}$
$a_3+1 \ge 2\sqrt{a_3}$
.......
$a_n+1 \ge 2\sqrt{a_n}$
\Rightarrow $(a_1+1)(a_2+1)...(a_n+1) \ge 2^n.\sqrt{a_1.a_2...a_n}=2^n$
Dấu = xảy ra \Leftrightarrow $a_1=a_2=a_3=...=a_n=1$
...............................
 
E

eye_smile

2,$\dfrac{x^4}{y+3z}+\dfrac{y^4}{z+3x}+\dfrac{z^4}{x+3y} \ge \dfrac{(x^2+y^2
+z^2)^2}{4(x+y+z)} \ge \dfrac{(x^2+y^2+z^2)^2}{4\sqrt{3}.\sqrt{x^2+y^2+z^2}}=\dfrac{(\sqrt{x^2+y^2+z^2})^3}{4\sqrt{3}} \ge \dfrac{(\sqrt{3})^3}{4\sqrt{3}}=\dfrac{3}{4}$
 
H

huynhbachkhoa23

Bài 1:

Holder: $VT \ge (\sqrt[n]{\prod\limits_{i=1}^{n} a_i}+1)^n=2^n$

Bài 2:

$x+y+z \ge sqrt{3(xy+yz+zx)} \ge 3$

Cauchy-Schwarz: $VT \ge \dfrac{(x^2+y^2+z^2)^2}{4(x+y+z)} \ge \dfrac{(x+y+z)^3}{36} \ge \dfrac{3}{4}$
 
Top Bottom