You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser.
cos^2 x+cos^2(x+2II/3)+cos^2(x+4II/3)!
$cos^2x+cos^2(x+\dfrac{2\pi }{3})+cos^2(x+\dfrac{4\pi }{3})$
= $cos^2x+(cosx.cos\dfrac{2\pi }{3}-sinx.sin\dfrac{2\pi }{3})^2+(cosx.cos\dfrac{4\pi }{3}-sinx.sin\dfrac{4\pi }{3})^2$
= $cos^2x+(\dfrac{-cosx-sinx\sqrt{3}}{2})^2+(\dfrac{-cosx+sinx\sqrt{3}}{2})^2$
= $cos^2x+\dfrac{cos^2x+2\sqrt{3}cosx.sinx+3sin^2x}{4}+\dfrac{cos^2x-2\sqrt{3}cosx.sinx+3sin^2x}{4}$
= $\dfrac{3cos^2x+3sin^2x}{2}=1,5$