Bài 1: [TEX]\left{\begin{log_y{ \sqrt{xy}}=log_xy(1)}\\{2^x+2^y=3(2)}[/TEX]
Giải
ĐK: x,y > 0, [TEX]x,y \neq 1[/TEX]
[TEX](1) \Leftrightarrow \frac{1}{2}(log_yx+1)=log_xy \Leftrightarrow log_yx+1= \frac{2}{log_yx}[/TEX]
[TEX](log_yx)^2+log_yx-2=0 \Leftrightarrow \left[\begin{log_yx=1}\\{log_yx=-2}[/TEX]
[TEX]\Leftrightarrow \left[\begin{x=y}\\{x= \frac{1}{y^2}}[/TEX]
[TEX]+) y=x \Rightarrow 2.2^x=3 \Leftrightarrow x=log_2{ \frac{3}{2}}[/TEX]
[TEX]+) x= \frac{1}{y^2} \Rightarrow 2^y+2^{ \frac{1}{y^2}}=3[/TEX]
Cauchy: [TEX]2^y+2^{ \frac{1}{y^2}} \geq 2.2^{ \frac{y+ \frac{1}{y^2}}{2}}[/TEX]
[TEX]y+ \frac{1}{y^2}= \frac{y}{2}+ \frac{y}{2}+ \frac{1}{y^2} \geq \frac{3}{ \sqrt[3]{4}}[/TEX]
[TEX]\Rightarrow 2^y+2^{ \frac{1}{y^2}} \geq 2^{ \frac{3}{2 \sqrt[3]{4}}} > 3 (???)[/TEX]
Bài 2: [TEX]\left{\begin{log_x(x^3+2x^2-3x-5y)=3}\\{log_y(y^3+2y^2-3y-5x)=3}[/TEX]
Giải
ĐK: [TEX]0 < x, y \neq 1,x^3+2x^2-3x-5y > 0, y^3+2y^2-3y-5x > 0[/TEX]
[TEX]HPT \Leftrightarrow \left{\begin{x^3+2x^2-3x-5y=x^3}\\{y^3+2y^2-3y-5x=y^3}[/TEX]
[TEX]\Leftrightarrow \left{\begin{2x^2-3x-5y=0}\\{2y^2-3y-5x=0}[/TEX]
Hệ PT đối xứng loại 2 giải OK