1.[TEX]sin^8x+cos^8x=2(sin^10x+cos^10x+\frac{5}{4}cos2x)[/TEX]
2.[TEX]\frac{1}{1+cos2x}+\frac{1}{1+cos4x}+\frac{1}{1-cos6x}=2[/tex]
3.[TEX]\frac{sin^10x+cos^10x}{4}=\frac{sin^6x+cos^6x}{4cos^22x+sin^22x}[/TEX]
sẽ làm bài 3 trước cho 3,[TEX]\frac{sin^10x+cos^10x}{4}=\frac{sin^6x+cos^6x}{4cos^22x+sin^22x}[/TEX](1)
[TEX]VP=\frac{sin^6x+cos^6x}{4cos^22x+sin^22x}[/TEX]
[TEX]=\frac{(sin^2x+cos^2x)^3-3sin^2x.cos^2x}{4sin^22x+4(1-sin^22x)}[/TEX]
[TEX]=\frac{1-(\frac{3}{4}sin^22x)}{4-3sin^22x}[/tex]
[TEX]=\frac{1}{4}[/TEX]
pt\Leftrightarrow[TEX]sin^10x+cos^10x=\frac{1}{4}[/tex]
ta có : [TEX]cos^10x[/TEX]\leq[TEX]cos^2[/TEX] x và [TEX]sin^10x[/TEX]\leq[tex]sin^2x[/tex]
\RightarrowVT[tex]=\frac{sin^10x+cos^10x}{4}[/tex]\leq[tex]\frac{1}{4}(sin^2x+cos^2x)[/tex]
=> VT [tex]=\frac{1}{4}[/tex] \Leftrightarrow [TEX]sin^10[/TEX]x=[TEX]sin^2x[/TEX] và [TEX]cos^10x[/tex]=[tex]cos^2x[/TEX]
\Leftrightarrow cosx=0 hoặc sinx=0