T
thienlong_cuong
![](https://blog.hocmai.vn/wp-content/uploads/2017/07/hot.gif)
![](https://blog.hocmai.vn/wp-content/uploads/2017/07/hot.gif)
Chứng minh các bất đẳng thức sau
1. a2 + 4b2 + 4c2 4ab - 4ac + 8bc
2. a2 + 4b2 + 3c2 > 2a + 12b + 6c – 14
5. 10a2 + 5b2 +12ab + 4a - 6b + 13 0
6. a2 + 9b2 + c2 + > 2a + 12b + 4c
7. a2 – 4ab + 5b2 – 2b + 5 4
8. x2 – xy + y2 0
9. x2 + xy + y2 -3x – 3y + 3 \geq0
10. x2 + xy + y2 -5x - 4y + 7 \geq0
11. x4 + x3y + xy3 +y4 \geq 0
12. x5 + x4y + xy4 +y5 \geq0 với x + y \geq0
13. a4 + b4 +c4 \geq a2b2 + b2c2 + c2a2
14. (a2 + b2).(a2 + 1) \geq4a2b
1. a2 + 4b2 + 4c2 4ab - 4ac + 8bc
2. a2 + 4b2 + 3c2 > 2a + 12b + 6c – 14
5. 10a2 + 5b2 +12ab + 4a - 6b + 13 0
6. a2 + 9b2 + c2 + > 2a + 12b + 4c
7. a2 – 4ab + 5b2 – 2b + 5 4
8. x2 – xy + y2 0
9. x2 + xy + y2 -3x – 3y + 3 \geq0
10. x2 + xy + y2 -5x - 4y + 7 \geq0
11. x4 + x3y + xy3 +y4 \geq 0
12. x5 + x4y + xy4 +y5 \geq0 với x + y \geq0
13. a4 + b4 +c4 \geq a2b2 + b2c2 + c2a2
14. (a2 + b2).(a2 + 1) \geq4a2b