a) Ta thấy: BCDE là hình thang.
Lại có: [tex]BC//DE \Rightarrow sđBD=sđCE \Rightarrow sđBE=sđCD \Rightarrow BE=CD \Rightarrow[/tex] BCDE là hình thang cân.
b) Xét tam giác KCE và KDA có [tex]\widehat{KCE}=\widehat{KDA},\widehat{CKE}=\widehat{DKA} \Rightarrow \Delta KCE \sim \Delta KDA \Rightarrow \frac{KC}{KE}=\frac{KD}{KA} \Rightarrow KC.KA=KD.KE[/tex]
c) Ta thấy: [tex]sđBD+sđCE+sđBC=180^o \Rightarrow 2sđBD+2\widehat{BAC}=180^o \Rightarrow 2sđBD+90^o=180^o \Rightarrow sđBD=45^o \Rightarrow 2\widehat{BED}=45^o[/tex]
[tex]2\widehat{CKE}=sđAD+sđCE=90^o+sđBD=90^o+45^o=135^o \Rightarrow 2(\widehat{CKE}+\widehat{BED})=180^o \Rightarrow \widehat{CKE}+\widehat{BED}=90^o \Rightarrow BE \perp AC[/tex]
d) Ta có: [tex]\widehat{BOC}=sđBC=90^o \Rightarrow \Delta BOC[/tex] vuông cân tại O.
[tex]\Rightarrow BC=\sqrt{2}OB=\sqrt{2}R[/tex]
Ta có: [tex]S_{BOC}=\frac{1}{2}BO.OC=\frac{R^2}{2},S_{hqBC}=\frac{90.R^2.\pi}{360}=\frac{R^2.\pi}{4} \Rightarrow S_{vpBC}=S_{hqBC}-S_{BOC}=\frac{R^2.\pi}{4}-\frac{R^2}{2}=\frac{R^2(\pi-2)}{4}[/tex]