Đặt [tex]x=\sqrt[4]{2}\Rightarrow \sqrt[4]{2}+\sqrt[4]{4}+\sqrt[4]{8}+\sqrt[4]{16}=x+x^2+x^3+x^4=x(1+x+x^2+x^3)=\frac{x(x-1)(x^3+x^2+x+1)}{x-1}=\frac{x(x^4-1)}{x-1}=\frac{\sqrt[3]{2}(2-1)}{\sqrt[4]{2}-1}=\frac{\sqrt[4]{2}}{\sqrt[4]{2}-1}\Rightarrow \frac{15}{\sqrt[4]{2}+\sqrt[4]{4}+\sqrt[4]{8}+\sqrt[4]{16}}=\frac{15(\sqrt[4]{2}-1)}{\sqrt[4]{2}}=\frac{15\sqrt[4]{2}(\sqrt[4]{2}-1)}{2}[/tex]