a.
$AD//BM\Rightarrow \widehat{DAI}=\widehat{MBI}$
$\triangle ADI=\triangle BMI \\\Rightarrow \widehat{AID}=\widehat{BIM}\\\Rightarrow \widehat{AID}+\widehat{AIM}=\widehat{BIM}+\widehat{AIM}\\\Rightarrow \widehat{DIM}=\widehat{AIB}$
Mà $AB$ là một đường thẳng $\Rightarrow \widehat{AIB}=180^o\Rightarrow \widehat{DIM}=180^o$
$\Rightarrow D,I,M$ thẳng hàng.
b.
$\triangle ADB=\trianlge BMA \Rightarrow \widehat{DBA}=\widehat{MAB}\Rightarrow BD//AM$
c.
$AD//BM$ hay $DE//BC \Rightarrow \widehat{EAC}=\widehat{MCE}; \widehat{AEM}=\widehat{CME};\widehat{ADM}=\widehat{BMD}$
$AD=AE; BM=MC; AD=BM\Rightarrow AE=MC$
$\triangle EAC=\triangle MCE\Rightarrow \widehat{ECA}=\widehat{MAC}\Rightarrow EC//AM$
$\Rightarrow BD//CE//AM$
d.
$\triangle AEK=\triangle CMK \Rightarrow AK=CK\Rightarrow K$ là trung điểm $AC$
e.
$AD=BM; AE=MC\Rightarrow AD+AE=BM+MC\Rightarrow DE=BC$
Dễ dàng CM $\widehat{ADM}=\widehat{ACB}; \widehat{AEM}=\widehat{ABC}$
$\Rightarrow \triangle ABC=\triangle MED$