Đặt [tex]d=(n+1,6n+1)\Rightarrow 5\vdots d[/tex]
Nếu [tex]d=5\Rightarrow n+1\vdots 5\Rightarrow n=5k+4\Rightarrow \left\{\begin{matrix} n+1=5k+5\\ 6n+1=30k+25 \end{matrix}\right.\Rightarrow A=\frac{(n+1)(6n+1)}{2017}=\frac{25(k+1)(6k+5)}{2017}[/tex]
Đặt [tex]\frac{A}{25}=x^2\Rightarrow \frac{(k+1)(6k+5)}{2017}=x^2\Rightarrow (k+1)(6k+5)=2017x^2[/tex]
Vì [tex]6k+5> k+1,(6k+5,k+1)=1\Rightarrow \left\{\begin{matrix} k+1=1\\ 6k+5=2017x^2 \end{matrix}\right.[/tex] hoặc [tex]\left\{\begin{matrix} k+1=2017\\ 6k+1=x^2 \end{matrix}\right.[/tex] hoặc [tex]\left\{\begin{matrix} k+1=x^2\\ 6k+5=2017 \end{matrix}\right.[/tex]
Thử lại ta thấy không thỏa mãn.
Nếu [tex]d=1\Rightarrow (n+1,6n+1)=1[/tex]
[tex]\frac{(n+1)(6n+1)}{2017}=x^2\Rightarrow (n+1)(6n+1)=2017x^2\Rightarrow \left\{\begin{matrix} n+1=2017\\ 6n+1=x^2 \end{matrix}\right.[/tex] hoặc [tex]\left\{\begin{matrix} n+1=x^2\\ 6n+1=2017 \end{matrix}\right.[/tex]
Thử lại ta thấy không thỏa mãn.