Áp dụng bđt Côsi ta có
[tex]a^2+1 \geq 2a[/tex]
\Rightarrow [tex]a^2+2b+3 \geq2(a+b+1) [/tex]
Ta có
A=[tex]\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{ c} {c^ 2+2a+3}[/tex]
A\leq [tex]\frac{1}{2}.(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c} {c +a+1})[/tex]
A \leq [tex]\frac{1}{2}.(3-\frac{b+1}{a+b+1}+\frac{c+1}{b+c+1}+\frac{ a+1} {c +a+1})[/tex]
A\leq [tex]\frac{1}{2}.(3-\frac{b+1}{a+b+1}+\frac{c+1}{b+c+1}+\frac{ a+1} {c +a+1})[/tex]
A \leq [tex]\frac{1}{2}.(3-\frac{(b+1)^2}{(a+b+1)(b+1)}+\frac{(c+1)^2}{(b+c+1)(c+1)}+\frac{(a+1)^2} {(c +a+1)(a+1)})[/tex]
A \leq [tex]\frac{1}{2}.(3-\frac{(a+b+c+3)^2}{a^2+b^2+c^2+ab+bc+ca+3a+3b+3c+3})[/tex]
A\leq [tex]\frac{1}{2}.(3-\frac{(a+b+c+3)^2}{ab+bc+ca+3a+3b+3c+6})[/tex]
A \leq [tex]\frac{1}{2}.(3-\frac{(a+b+c+3)^2}{\frac{(a+b+c)^2-a^2-b^2-c^2}{2}+3a+3b+3c+6})[/tex]
A \leq [tex]\frac{1}{2}.(3-\frac{2(a+b+c+3)^2}{(a+b+c)^2-3+6(a+b+c)+12})[/tex]
A \leq [tex]\frac{1}{2}.(3-\frac{2(a+b+c+3)^2}{(a+b+c)^2+6(a+b+c)+9})[/tex]
A \leq [tex]\frac{1}{2}[SIZE=4][/tex]
Dấu = xảy ra \Leftrightarrow a=b=c=1