Toán9-Chứng minh bất đẳng thức.

L

linh030294

Với [tex]k \in N* [/tex] , ta có :
[TEX] \frac{1}{k^2} = \frac{4}{4k^2} < \frac{4}{4k^2-1} = \frac{4}{(2k-1)(2k+1)}=2(\frac{1}{2k-1}- \frac{1}{2k+1})[/TEX]
Do đó : [TEX]\frac{1}{k^2}<2(\frac{1}{2k-1}- \frac{1}{2k+1})[/TEX]
suy ra : [TEX]\frac{1}{3^2}<2 (\frac{1}{5}-\frac{1}{7})[/TEX]
[TEX] \frac{1}{4^2}< 2(\frac{1}{7}-\frac{1}{9}) [/TEX]
[TEX]\frac{1}{n^2}<2(\frac{1}{2n-1}-\frac{1}{2n+1})[/TEX]
suy ra :[TEX]\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+ \frac{1}{n^2}\< \frac{1}{1^2}+\frac{1}{2^2}+\frac{2}{5}-\frac{2}{2n+1}=1,65-\frac{2}{2n+1} [/TEX] <1,65
Vay :[TEX]\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+ \frac{1}{n^2}[/TEX]< 1,65 (dpcm)
 
Last edited by a moderator:
Top Bottom