[Toán10]BĐT đây moi bà con xoi

C

ctsp_a1k40sp

[TEX]\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\leq\frac{1}{2}[/TEX]:p:p:p

Vói:a,b,c\geq0 và abc=1
[TEX]a^2+2b^2+3=(a^2+b^2)+(b^2+1)+2 \geq 2(ab+b+1)[/TEX]
...
...
nên
[TEX] \frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3} [/TEX]
[TEX] \leq \frac{1}{2(ab+b+1)}+\frac{1}{2(bc+c+1)}+\frac{1}{2(ac+a+1)} [/TEX]
[TEX] =\frac{c}{2(bc+c+1)}+\frac{1}{2(bc+c+1)}+\frac{bc}{2(bc+c+1)}=\frac{1}{2} [/TEX]
 
Top Bottom