Mình đưa về đồng bậc đề làm nhé:
$F = 3(\sin^8 x - \cos^8 x) + 4(\cos^6 x - 2 \sin^6 x)(\sin^2 x + \cos^2 x) + 6 \sin^4 x (\sin^2 x + \cos^2 x)^2$
$= \cos^8 x - 5 \sin^8 x + 4 \cos^6 x \sin^2 x - 8 \sin^6 x \cos^2 x + 6 \sin^8 x + 12 \sin^6 x \cos^2 x + 6 \sin^4 x \cos^4 x$
$= \sin^8 x + 4 \sin^6 x \sin^2 x + 6 \sin^4 x \cos^4 x + 4 \sin^2 x \cos^6 x + \cos^8 x$
$= (\sin^2 x + \cos^2 x)^4 = 1$