a,Ta có: [TEX]n^3-7n=n^3-6n-n[/TEX] , -6n dĩ nhiên chia hết cho 6, ta cần chưng minh [TEX]n^3-n \vdots 6[/TEX]
mà [TEX]n^3-n=n(n-1)(n+1) \vdots 6[/TEX] ( 3 số tự nhiên liên tiếp thì chia hết cho 6) \Rightarrow [TEX]n^3-7n \vdots 6 \Rightarrow dpcm[/TEX]
b,Ta có: [TEX]n^3-13n=n^3-12n-n[/TEX] , -12n dĩ nhiên chia hết cho 6, ta cần chưng minh [TEX]n^3-n \vdots 6[/TEX]
mà [TEX]n^3-n=n(n-1)(n+1) \vdots 6[/TEX] ( 3 số tự nhiên liên tiếp thì chia hết cho 6) \Rightarrow [TEX]n^3-13n \vdots 6 \Rightarrow dpcm[/TEX]
c, có thể giải theo 2 cách:
Cách 1: tách [TEX]n^3+5n=n^3-n+6n = n(n-1)(n+1)+6n \vdots 6 \Rightarrow dpcm[/TEX]
Cách 2: [TEX]n^3+5n=n^3 +5n - 3n +3n^2 +3n - 3n^2=n(n^2 +3n +2) + 3n - 3n^2=n(n+1)(n+2) +3n(n+1)[/TEX]
n(n+1)(n+2) dĩ nhiên chia hết cho 6,
3n(n+1) dĩ nhiên chia hết cho 6 vì n(n+1) chia hết cho 2, \Rightarrow 3n(n+1) chia hết cho 6 \Rightarrow [TEX]n^3+5n \vdots 6 \Rightarrow dpcm[/TEX]