Giúp e bài này
[tex]\int\limits_{0}^{pi/6}(x+tan x + tan 2x)/(cos^2 x)dx[/tex]
[laTEX]I = \int_{0}^{\frac{\pi}{6}}\frac{x}{cos^2x}dx + \int_{0}^{\frac{\pi}{6}}\frac{tanx}{cos^2x}dx + \int_{0}^{\frac{\pi}{6}}\frac{tan2x}{cos^2x}dx = I_1+I_2+I_3 \\ \\ I_1: u = x \Rightarrow du = dx \\ \\ dv = \frac{1}{cos^2x} \Rightarrow v = tan x \\ \\ I_1 = x.tanx \big|_0^{\frac{\pi}{6}} - \int_{0}^{\frac{\pi}{6}}tan xdx \\ \\ I_1 = \frac{\pi}{6.\sqrt{3}} + ln|cosx| \big|_0^{\frac{\pi}{6}} \\ \\ I_2 : u = tan x \Rightarrow du = \frac{dx}{cos^2x} \\ \\ I_3 = \int_0^{\frac{\pi}{6}} \frac{tan2xdx}{cos^2x} \\ \\ I_3 = \int_0^{\frac{\pi}{6}} \frac{2tanxdx}{(1-tan^2x)cos^2x} \\ \\ u = tan x [/laTEX]