M
mon_gau
Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.
bài toán : \int_{}^{}dx/ (2*x^2 + 5*x +2) =\int_{}^{}dx/ [(2*x + 1)*(x+2)] đến đây theo cách giải trong phần kỹ năng tách của thầy phương : \int_{}^{}[2/(2*x+1). . . 1/(x+2)]dx thầy đã hướng dẫn đặt dấu trừ hoặc cộng vào đây để triệt tiêu "x", trong bài này thì ta đặt dấu trừ. thầy cũng nói: 2/(2*x + 1) và 1/(x+2) đặt cái nào ở trước cũng đc. sau đây là bài giải của thầy (th đặt 1/(x+2) trước 2/(2*x + 1) : \int_{}^{}[1/(x+2) - 2/(2*x + 1)]dx = -1/3 * \int_{}^{}[1/(x+2) - 2/(2*x +1)] = -1/3 * [\int_{}^{}1/(x+2) dx -\int_{}^{}2/(2*x + 2) dx] =-1/3 * [\int_{}^{}[d(x+2)]/(x+2) - \int_{}^{}[d(2*x + 1)]/(2*x + 1) = -1/3 * (ln [x + 2] - ln[2*x + 1]) +C
tuy nhiên, nếu bài giải theo cách đặt 2/(2*x + 1) trc 1/(x+2) thì kết quả là : 1/3 * (ln [x+2] - ln[2*x + 1])
theo như thầy nói thì đặt cái nào trc cũng đc. nhưng níu đặt ngược lại như v thì bài toán ra kết quả dương, bài của thầy ra kết quả âm. như v cái nào đúng cái nào sai? em vẫn chưa hiểu đc chỗ này, mong m.n giải thik giúp em ạ. cảm ơn m.n!
tuy nhiên, nếu bài giải theo cách đặt 2/(2*x + 1) trc 1/(x+2) thì kết quả là : 1/3 * (ln [x+2] - ln[2*x + 1])
theo như thầy nói thì đặt cái nào trc cũng đc. nhưng níu đặt ngược lại như v thì bài toán ra kết quả dương, bài của thầy ra kết quả âm. như v cái nào đúng cái nào sai? em vẫn chưa hiểu đc chỗ này, mong m.n giải thik giúp em ạ. cảm ơn m.n!