Gọi số kẹo tổ t1, tổ t2, tổ t3 chia cho nhau lúc đầu là x,y,z và số kẹo tổ t1, tổ t2, tổ t3 chia theo cô giáo lúc sau là a,b,c ( ĐK : x,y,z,a,b,c ∈ N*)
Ta có : x : y : z = 5 : 6 : 7 hay x/5=y/6=z/7=(x+y+z)/18 ( áp dụng t/c dãy tỉ số bằng nhau)
a : b : c = 4 : 5 : 6 hay a/4=b/5=c/6=(a+b+c)/15 (áp dụng t/c dãy tỉ số bằng nhau)
→ x/25=y/30=z/35=(x+y+z)/90 và a/24=b/30=c/36=(a+b+c)/90
Do số kẹo chỉ chia đi chia lại nên tổng số kẹo không thay đổi nên x+y+z=a+b+c và ta có:
x/25=y/30=z/35=a/24=b/30=c/36
Từ dãy tỉ số bằng nhau trên ta thấy z/35=c/36 do đó c>z nên số kẹo tổ 3 nhận được nhiều hơn so vs dự định là 4 túi.
Sau đó, bạn chỉ cần đặt dãy tỉ số bằng nhau bên trên là k mà biết c-z=4 ta sẽ tìm đc k, lại áp dụng dãy tỉ số bằng nhau để tìm ra tổng số kẹo là x+y+z hoặc a+b+c:khi (133)::khi (108): thế là xong r