toán thi học kì

C

casautinhban

Last edited by a moderator:
S

son9701

Sửa tex:
Đề bài:
Cho a;b;c> 0 và ab+bc+ca=2011.Tính:
[TEX]S = a\sqrt{\frac{(b^2 + 2011)(c^2 + 2011)}{a^2 + 2011}} + b\sqrt{\frac{(c^2 +2011)(a^2 +2011)}{b^2 +2011}} + c\sqrt{\frac{(a^2 +2011)(b^2 + 2011)}{c^2 + 2011}}[/TEX]
Giải hộ:
Do ab+bc+ca=2011:
[TEX]\Rightarrow S=a\sqrt{\frac{(b^2+ab+bc+ca)(c^2+bc+ab+ac)}{a^2+ab+bc+ca}}+b\sqrt{\frac{(c^2+ab+bc+ca)(a^2+bc+ab+ac)}{b^2+ab+bc+ca}}+c\sqrt{\frac{(a^2+ab+bc+ca)(b^2+bc+ab+ac)}{c^2+ab+bc+ca}}[/TEX]
[TEX]= a\sqrt{\frac{(a+b)(a+c)(b+c)^2}{(a+b)(a+c)}}+ b\sqrt{\frac{(a+b)(b+c)(a+c)^2}{(a+b)(b+c)}}+ c\sqrt{\frac{(c+b)(a+c)(b+a)^2}{(c+b)(a+c)}}=a(b+c)+b(a+c)+c(a+b)=ab+bc+ca+ab+bc+ca=2.2011=4022[/TEX]
 
Last edited by a moderator:
Top Bottom