Ta có: $(a^{2}-b^{2})^{2} \geq 0$
$a^{4}+b^{4} \geq 2a^{2}b^{2}$
=> $2.(a^{4}+b^{4}) \geq a^{4}+b^{4}+2a^{2}b^{2}=(a^{2}+b^{2})^{2}$
Lại có: $(a^{2}+b^{2})^{2} \geq (\frac{(a+b)^{2}}{2})^{2} = \frac{(a+b)^{4}}{4} = \frac{4^{4}}{4} = 4^{3} = 64$
=> $2.(a^{4}+b^{4}) \geq 64$
=> $(a^{4}+b^{4}) \geq 32$