toán số lớp 7

H

hotvodoi

Bài quá dễ:
_Nếu n=1\Rightarrow 1!+2!+...+n!=1!=1=1^2\Rightarrowx=y=1
_Nếu n=2\Rightarrow 1!+2!+...+!=1!+2!=3 (loại do 3 không là số chính phương)
_Nếu n=3\Rightarrow 1!+2!+...+n!=1!+2!+3!=9=3^2\Rightarrowx=3,y=2
_Nếu n\geq4\Rightarrow 1!+2!+...+n!=...3 (loại do số chính phương không có tận cùng là 3)
Vậy có 2 cặp số x, y thoả mãn giả thiết, đó là: (1,1);(3,2).
 
Last edited by a moderator:
N

nghialslsddls1

Nếu n=1 => 1!+2!+...+n!=1!=1=1^2x=y=1
_Nếu n=2 => 1!+2!+...+!=1!+2!=3 (loại do 3 không là số chính phương)
_Nếu n=3 => 1!+2!+...+n!=1!+2!+3!=9=3^2x=3,y=2
_Nếu n>hoặc = 4 => 1!+2!+...+n!=...3 (loại do số chính phương không có tận cùng là 3)
Vậy có 2 cặp số x, y thoả mãn giả thiết, đó là: (1,1);(3,2).
 
E

entei

-Nếu n=1 => 1!+2!+...+n!=1!=1=1^2x=y=1
-Nếu n=2 => 1!+2!+...+!=1!+2!=3 (Loai)
-Nếu n=3 => 1!+2!+...+n!=1!+2!+3!=9=3^2x=3,y=2
-Nếu n>hoặc = 4 => 1!+2!+...+n!=...3 (Loai)
Vậy có 2 cặp số x, y (1,1);(3,2).
 
Top Bottom