Toán rút gọn rất là khó

T

thinhrost1

$\dfrac{\dfrac{1}{2012}+\dfrac{2}{2011}+\dfrac{3}{2010}+...+\dfrac{2012}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}} =\dfrac{\dfrac{1}{2012}+1+\dfrac{2}{2011}+1+...+1}{ \dfrac{1}{2}+\dfrac{1}{3}+...+ \dfrac{1}{2013}}= \dfrac{2013( \dfrac{1}{2012}+\dfrac{1}{2011}+...+\dfrac{1}{2013})}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}}=2013$
 
Top Bottom