Toán 9 Toán rời rạc và tổ hợp

_Error404_

Học sinh chăm học
Thành viên
20 Tháng hai 2020
333
312
76
17
Hà Tĩnh
THCS Lê Văn Thiêm
[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

Viết 5 số 1;2;3;4;5 lên bảng. Ta thực hiện phép thay thế các số theo quy luật sau: ở mỗi bước, nếu có 2 số a,b thỏa mãn [tex]a-b \geq 2[/tex] thì ta xóa 2 số này và viết thêm vào hai số a-1;b+1. Hỏi ta có thể thực hiện tối đa bao nhiêu bước ?
 
  • Like
Reactions: Duy Quang Vũ 2007

7 1 2 5

Cựu TMod Toán
Thành viên
19 Tháng một 2019
6,871
11,478
1,141
Hà Tĩnh
THPT Chuyên Hà Tĩnh
Với 5 số trên bảng ta xét [tex]S_k=x_1^2+x_2^2+x_3^2+x_4^2+x_5^2[/tex]
Nhận thấy sau 1 lần biến đổi 2 số [TEX]x_i,x_j(x_j-x_i \geq 2)[/TEX] ta có: [tex]S_{k+1}-S_k=(x_i+1)^2+(x_j-1)^2-x_i^2-x_j^2=2(x_i-x_j)+2 \leq -2[/tex]
Khi đó ta thấy sau mỗi bước biến đổi thì [TEX]S_k[/TEX] giảm ít nhất [TEX]2[/TEX] đơn vị, mà [TEX]S_0=1^2+2^2+3^2+4^2+5^2=55[/TEX] nên quá trình phải dừng lại, khi đó trên bảng còn [TEX]a[/TEX] số x và [TEX]5-a[/TEX] số [TEX]x+1[/TEX] [TEX](0 \leq a \leq 5, 1 \leq x \leq 5)[/TEX]
Vì tổng các số trên bảng không đổi nên [TEX]ax+(5-a)(x+1)=15 \Rightarrow ax+5x-ax-a=10 \Rightarrow 5x-a=10 \Rightarrow a \vdots 5[/TEX]
Nếu [TEX]a=0 \Rightarrow x=2[/TEX], còn nếu [TEX]a=5 \Rightarrow x=3[/TEX]. Từ đó thì khi hoàn thành các bước, trên bảng còn các số 3.
Khi đó [TEX]S_k=5.3^2=45[/TEX] nên số bước biến đổi không quá [TEX]\frac{55-45}{2}=5[/TEX].
Cách biến đổi mà số bước bằng 5: [tex](1,2,3,4,5)\rightarrow (2,2,2,4,5)\rightarrow (2,2,3,3,5)\rightarrow (2,2,3,4,4)\rightarrow (2,3,3,3,4)\rightarrow (3,3,3,3,3)[/tex]
 
Last edited:
Top Bottom