2. Có mấy bài tương tự dạng này rồi
[tex](x+\sqrt{x^2+7})(y+\sqrt{y^2+7})=7\\+)\Leftrightarrow (x+\sqrt{x^2+7})(y+\sqrt{y^2+7})(y-\sqrt{y^2+7})=7(y-\sqrt{y^2+7})\\\Leftrightarrow (x+\sqrt{x^2+7})(y^2-y^2-7)=7(y-\sqrt{y^2+7})\\\Leftrightarrow x+\sqrt{x^2+7}+y-\sqrt{y^2+7}=0(1)\\+)\Leftrightarrow (x+\sqrt{x^2+7})(x-\sqrt{x^2+7})(y+\sqrt{y^2+7})=7(x-\sqrt{x^2+7})\\\Leftrightarrow (x^2-x^2-7)(y+\sqrt{y^2+7})=7(x-\sqrt{x^2+7})\\\Leftrightarrow x-\sqrt{x^2+7}+y+\sqrt{y^2+7}=0(2)\\(1)+(2)\Leftrightarrow 2(x+y)=0\Leftrightarrow ...[/tex]
5.
[tex]\frac{x^2}{3}+\frac{x^2}{3}+\frac{x^2}{3}+\frac{1}{x^3}+\frac{1}{x^3}\geq 5\sqrt[5]{\frac{1}{3^3}}=\frac{5}{3^{\frac{3}{5}}}[/tex]