Ta có: [tex]\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\Rightarrow (\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2=4=\frac{2}{xy}-\frac{1}{z^2}\Leftrightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=\frac{2}{xy}-\frac{1}{z^2}\Leftrightarrow \frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}+\frac{1}{y^2}+\frac{2}{yz}+\frac{1}{z^2}=0\Rightarrow (\frac{1}{x}+\frac{1}{z})^2+(\frac{1}{y}+\frac{1}{z})^2=0\Leftrightarrow \frac{1}{z}=-\frac{1}{x}=-\frac{1}{y}\Rightarrow z=-x=-y\Rightarrow 2=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x}\Rightarrow x=\frac{1}{2}=y,z=-\frac{1}{2}\Rightarrow D=1[/tex]