Toán nâng cao lóp7

I

iceghost

Hình như đề là
$A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+ \cdots+\dfrac{1}{99.100} \\
= 1 - \dfrac12 + \dfrac13 - \dfrac14 + \dfrac15 - \dfrac16 + \cdots + \dfrac1{99} - \dfrac1{100} \\
= \left( 1 + \dfrac13 + \dfrac15 + \cdots + \dfrac1{99} \right) - \left( \dfrac12 + \dfrac14 + \dfrac16 + \cdots \dfrac1{100} \right) \\
= \left( 1+ \dfrac13 + \dfrac15 + \cdots + \dfrac1{99} \right) + \left( \dfrac12 + \dfrac14 + \dfrac16 + \cdots \dfrac1{100} \right) - 2.\left( \dfrac12 + \dfrac14 + \dfrac16 + \cdots \dfrac1{100} \right) \\
= \left( 1 + \dfrac12 + \dfrac13 + \dfrac14 + \dfrac15 + \cdots + \dfrac1{99} + \dfrac1{100} \right) - \left( 1 + \dfrac12 + \dfrac13 + \cdots + \dfrac1{50} \right) \\
= \dfrac1{51} + \dfrac1{52} + \dfrac1{53} + \cdots + \dfrac1{100} \\
\implies 2013A = \dfrac{2013}{51} + \dfrac{2013}{52} + \dfrac{2013}{53} + \cdots + \dfrac{2013}{100} = B \\
\implies \dfrac{B}{A} = \dfrac{2013A}{A} = 2013$
 
Top Bottom