Chứng tỏ nếu:
ax^3 = by^3 = cz^3 và 1/x +1/y +1/z= 1
thì :
∛(ax^2+by^2+cz^2) = ∛(a) + ∛(b) + ∛(c)
ĐKXĐ: [tex]x;y;z\neq 0[/tex]
Ta có: $ax^3=by^3=cz^3$ nên suy ra:
- [tex]ax^{2}=\frac{by^{3}}{x}=\frac{cz^{3}}{x}[/tex]
- [tex]by^{2}=\frac{ax^{3}}{y}=\frac{cz^{3}}{y}[/tex]
- [tex]cz^{2}=\frac{by^{3}}{z}=\frac{ax^{3}}{z}[/tex]
Suy ra: $2(ax^2+by^2+cz^2)$
$=ax^3(\frac{1}{y}+\frac{1}{z})+by^3(\frac{1}{z}+\frac{1}{x})+cz^3(\frac{1}{x}+\frac{1}{y})$
$=ax^3(\frac{1}{y}+\frac{1}{z})+ax^3(\frac{1}{z}+\frac{1}{x})+ax^3(\frac{1}{x}+\frac{1}{y})$
$=2.ax^3(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=2ax^3$
$\Rightarrow ax^2+by^2+cz^2=ax^3$
$\Rightarrow \sqrt[3]{ax^2+by^2+cz^2}=x\sqrt[3]{a}$
$\Rightarrow \frac{1}{x}\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{a}$
Tương tự: .....
Suy ra $(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}$
$\Leftrightarrow \sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}(dpcm)$