$1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+ \dfrac{2}{x(x+1)}=1+\dfrac{2009}{2010} \\ \leftrightarrow \dfrac{2}{1\times2}+\dfrac{2}{2\times3}+\dfrac{2}{3\times4}+ \dfrac{2}{4\times5}+...+\dfrac{2}{x(x+1)}=1+\dfrac{2009}{2010} \\ \leftrightarrow 2 \times ( \dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+ \dfrac{1}{4\times5}+...+\dfrac{1}{x(x+1)}=1+\dfrac{2009}{2010} \\ \leftrightarrow 2 \times (1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5} +...+\dfrac{1}{x}-\dfrac{1}{x+1})=1+\dfrac{2009}{2010} \\ \leftrightarrow 2 \times ( 1-\dfrac{1}{x+1})=1+\dfrac{2009}{2010}\\ \leftrightarrow 2-\dfrac{2}{x+1}=1+\dfrac{2009}{2010} \\ \leftrightarrow 2-1-\dfrac{2009}{2010}=\dfrac{2}{x+1} \\ \leftrightarrow \dfrac{1}{2010}=\dfrac{2}{x+1} \\ \leftrightarrow \dfrac{2}{4020}=\dfrac{2}{x+1} \\ \leftrightarrow x+1=4020 \\ \leftrightarrow x=4019$