toán nâng cao 9

P

phuonguyen8athd

[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

1) cho tam giác ABC có góc A=60o, kẻ BH vuông AC và CK vuông AB
a) c/m KH=BC.cosA
b) trung điểm của BC là M, c/m tam giác MKH là tam giác đều

2)cho tam giác ABC có 3 góc nhọn, các cạnh đối diện các góc A,B,C theo thứ tự là a,b,c
c/m a/sinA=b/sinhB=c/sinC
 
H

hoangtubongdem5

1) cho tam giác ABC có góc A=60o, kẻ BH vuông AC và CK vuông AB
a) c/m KH=BC.cosA

Ta có: [TEX]\Delta{AKC} \sim \Delta{AHB} (g.g)[/TEX]

[TEX]\Rightarrow \frac{AK}{AH} = \frac{AC}{AB}[/TEX]

có [TEX]\hat{B}[/TEX] chung

[TEX]\Rightarrow \Delta{AKH} \sim \Delta{ACB}[/TEX]

[TEX]\Rightarrow \frac{AK}{AH}=\frac{AC}{CB}[/TEX]

[TEX]\Rightarrow \frac{AK}{AC}= \frac{KH}{CB}[/TEX]

[TEX]\Rightarrow cosA = \frac{KH}{CB}[/TEX]

[TEX]\Rightarrow KH=BC.cosA[/TEX]
 
H

huynhbachkhoa23

Bài 2:

$\Delta ABC$ nội tiếp $(O)$

Vẽ đường kính $BD$

Có $\dfrac{a}{\sin A}=\dfrac{a}{\sin BDC}=\dfrac{a}{\dfrac{a}{BD}}=2R$

Tương tự.
 
H

hoangtubongdem5

2)cho tam giác ABC có 3 góc nhọn, các cạnh đối diện các góc A,B,C theo thứ tự là a,b,c
c/m [TEX]\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}[/TEX]


Vẽ [TEX]CH \bot AB[/TEX], ta có [TEX]sinA= \frac{CH}{AC}[/TEX]; [TEX]sinB=\frac{CH}{BC}[/TEX]

Do đó, [TEX]\frac{sinA}{sinB}=\frac{BC}{AC}=\frac{a}{b}[/TEX]

Suy ra[TEX] \frac{a}{sinA}=\frac{b}{sinB}[/TEX]

Chứng minh tương tự được [TEX]\frac{b}{sinB}=\frac{c}{sinC}[/TEX]

Vậy ...
 
H

huynhbachkhoa23

Theo tính chất đường cao

$\dfrac{HK}{BC}=\dfrac{AH}{AB}=\cos A$

Suy ra $HK=BC.\cos A=\dfrac{BC}{2}$

Có $\Delta BKC$ vuông tại $K$ suy ra $KM=\dfrac{BC}{2}$

Tượng tự và ta có điều cần chứng minh.
 
Top Bottom