toan luong giac

S

silvery93

giải phương trình:
[tex][(cosx)^2 +1/(cosx)^2]^2 +[(sinx)^2 +1/(sinx)^2]^2 = 12 +(siny)/2[/tex]
chú ý tex

[TEX](sin^2x+\frac{1}{sin^2x})^2+(cos^2x+\frac{1}{cos^2x})^2=12+\frac{1}{2}siny[/TEX]

.[TEX]VT=(sin^2x+\frac{1}{sin^2x})^2+(cos^2x+\frac{1}{cos^2x})^2[/TEX]
\geq [TEX]\frac{1}{2}[(cos^2x+\frac{1}{cos^2x})+(sin^2x+\frac{1}{sin^2x})]^2[/TEX] ( vi`[TEX]a^2+b^2\geq\frac{1}{2}(a+b)^2)[/TEX]

[TEX]=\frac{1}{2}[1+\frac{1}{cos^2xsin^2x}]^2[/TEX]

[TEX]=\frac{1}{2}[1+\frac{4}{sin^22x}]^2[/TEX]

\geq[TEX]\frac{1}{2}(1+\frac{4}{1})=\frac{25}{2}[/TEX]

mặt #

[TEX]VP=12+\frac{1}{2}siny\leq12+\frac{1}{2}=\frac{25}{2}[/TEX]

vậy [TEX]VT=VP[/TEX]

\Leftrightarrow [TEX]siny=1 ; cos^2x=sin^2x ; sin^22x=1[/TEX]
 
Top Bottom