1.
Bài này em thiếu kìa.
Phải có [tex]\frac{1}{3}+ \frac{1}{6}+ \frac{1}{10}+...+ \frac{2}{x(x+1)}[/tex] bằng mấy ?
Hướng dẫn em cách giải nhé!
Nếu [tex]\frac{1}{3}+ \frac{1}{6}+ \frac{1}{10}+...+ \frac{2}{x(x+1)} =N[/tex]
[tex]\Rightarrow \frac{2}{6}+ \frac{2}{12}+ \frac{2}{20}+...+ \frac{2}{x(x+1)} =N[/tex]
[tex]\Rightarrow 2 \left( \frac{1}{2.3}+ \frac{1}{3.4}+ \frac{1}{4.5}+...+ \frac{1}{x(x+1)} \right)=N[/tex]
[tex] \Rightarrow 2 \left( \frac{1}{2}- \frac{1}{x+1} \right)=N[/tex]
Nếu biết N thì dễ tìm được x ròi.
2. Ta có:
[tex] \frac{1}{4}+ \frac{1}{16}+ \frac{1}{36}+ \frac{1}{64}+ \frac{100}+ \frac{1}{144}+ \frac{1}{196}= \frac{1}{4} \left( 1+ \frac{1}{4}+ \frac{1}{9}+ \frac{1}{16}+ \frac{1}{25}+ \frac{1}{36}+ \frac{1}{49} \right) = \frac{1}{4} \left( 1+ \frac{1}{2^2}+ \frac{1}{3^2}+ \frac{1}{4^2}+ \frac{1}{5^2}+ \frac{1}{6^2}+ \frac{1}{7^2} \right) < \frac{1}{4} \left( 1+ \frac{1}{1.2}+ \frac{1}{2.3}+ \frac{1}{3.4}+ \frac{1}{4.5}+ \frac{1}{5.6}+ \frac{1}{6.7} \right)= \frac{1}{4} \left( 1+ 1- \frac{1}{7} \right)= \frac{1}{2}- \frac{1}{28} < \frac{1}{2}[/tex].
Vậy [tex] \frac{1}{4}+ \frac{1}{16}+ \frac{1}{36}+ \frac{1}{64}+ \frac{100}+ \frac{1}{144}+ \frac{1}{196}< \frac{1}{2} [/tex]