[tex]Giúp mình với CMR.
a,N=\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+...+\frac{1}{n^{2}}<1
b,M=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}<\frac{1}{4}
c,P=\frac{36}{1.3.5}+\frac{36}{3.5.7}+\frac{36}{5.7.9}+...+\frac{36}{25.27.29}<3[/tex]
ta có: [tex]\frac{1}{2^{2}}<\frac{1}{1.2}[/tex]
tương tự => [tex]N<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{(n^{2}-1).n^{2}}\\ => N<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...-\frac{1}{n^{2}}\\ => N<1-\frac{1}{n^{2}}<1[/tex]
b,ta có:[tex]\frac{1}{1.2.3}=\frac{1}{2}.(\frac{1}{1.2}-\frac{1}{2.3})[/tex]
tương tự => [tex]M=\frac{1}{2}.(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...-\frac{1}{19.20})\\\\ => M=\frac{1}{2}.(\frac{1}{2}-\frac{1}{19.20})=\frac{1}{4}-\frac{1}{2.19.20}<\frac{1}{4}[/tex]
c, ta có:[tex]P=36.(\frac{1}{1.3.5}+\frac{1}{3.5.7}+...+\frac{1}{25.27.29})[/tex]
mà [tex]\frac{1}{1.3.5}=\frac{1}{4}.(\frac{1}{1.3}-\frac{1}{3.5})[/tex]
tương tự, ta có: [tex]P=36.\frac{1}{4}.(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-...-\frac{1}{27.29})\\\\ => P=9.(\frac{1}{3}-\frac{1}{27.29})\\\\ => P=3-\frac{1}{3.27.29}<3[/tex]