Toán khó

E

eye_smile

$1+\dfrac{1}{a^2} \ge \dfrac{2}{|a|}$

$2+\dfrac{1}{b^2} \ge \dfrac{2\sqrt{2}}{|b|}$

$8+\dfrac{1}{c^2} \ge \dfrac{4\sqrt{2}}{|c|}$

\Rightarrow $(\dfrac{1}{a^2}+1)(\dfrac{1}{b^2}+2)(\dfrac{1}{c^2}+8) = \dfrac{32}{abc} \ge \dfrac{32}{|abc|}$

\Rightarrow Nghiệm của PT : $a^2=1;b^2=\dfrac{1}{2};c^2=\dfrac{1}{8}$
 
Top Bottom