1)a) giải pt:[TEX]\sqrt{9{x}^{2}+16}=2\sqrt{2x+4}+4\sqrt{2-x}[/TEX]
[TEX]\sqrt{9{x}^{2}+16}=2\sqrt{2x+4}+4\sqrt{2-x}[/TEX] [tex](1)[/tex]
Lại 1 bài cũ :ĐK [tex]\left| x \right| \le 2[/tex]
Đặt [tex]\begin{array}{l}t = \sqrt {2\left( {4 - {x^2}} \right)} \\\left( 1 \right) \Leftrightarrow 4\left( {2x + 4} \right) + 16\sqrt {2\left( {4 - {x^2}} \right)} + 16\left( {2 - x} \right) = 9{x^2} + 16\\ \Leftrightarrow 8\left( {4 - {x^2}} \right) + 16\sqrt {2\left( {4 - {x^2}} \right)} = {x^2} + 8x\\
\Rightarrow 4{t^2} + 16t - {x^2} - 8x = 0 \Leftrightarrow \left[ \begin{array}{l}{t_1} = \frac{x}{2}\\{t_2} = \frac{{ - x}}{2} - 4\end{array} \right.\end{array}[/tex]
Vì [tex]\begin{array}{l}\left| x \right| \le 2 \Rightarrow {t_2} < 0\left( {loai} \right)\\ \Rightarrow t = \frac{x}{2} \Rightarrow \sqrt {2\left( {4 - {x^2}} \right)} = \frac{x}{2} \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\8\left( {4 - {x^2}} \right) = {x^2}\end{array} \right. \Leftrightarrow x = \frac{{4\sqrt 3 }}{2}\left( {tm} \right)\end{array}[/tex]